
NAME
OSSL_DECODER_CTX, OSSL_DECODER_CTX_new, OSSL_DECODER_settable_ctx_params,

OSSL_DECODER_CTX_set_params, OSSL_DECODER_CTX_free,

OSSL_DECODER_CTX_set_selection, OSSL_DECODER_CTX_set_input_type,

OSSL_DECODER_CTX_set_input_structure, OSSL_DECODER_CTX_add_decoder,

OSSL_DECODER_CTX_add_extra, OSSL_DECODER_CTX_get_num_decoders,

OSSL_DECODER_INSTANCE, OSSL_DECODER_CONSTRUCT, OSSL_DECODER_CLEANUP,

OSSL_DECODER_CTX_set_construct, OSSL_DECODER_CTX_set_construct_data,

OSSL_DECODER_CTX_set_cleanup, OSSL_DECODER_CTX_get_construct,

OSSL_DECODER_CTX_get_construct_data, OSSL_DECODER_CTX_get_cleanup,

OSSL_DECODER_export, OSSL_DECODER_INSTANCE_get_decoder,

OSSL_DECODER_INSTANCE_get_decoder_ctx, OSSL_DECODER_INSTANCE_get_input_type,

OSSL_DECODER_INSTANCE_get_input_structure - Decoder context routines

SYNOPSIS
#include <openssl/decoder.h>

typedef struct ossl_decoder_ctx_st OSSL_DECODER_CTX;

OSSL_DECODER_CTX *OSSL_DECODER_CTX_new(void);

const OSSL_PARAM *OSSL_DECODER_settable_ctx_params(OSSL_DECODER *decoder);

int OSSL_DECODER_CTX_set_params(OSSL_DECODER_CTX *ctx,

const OSSL_PARAM params[]);

void OSSL_DECODER_CTX_free(OSSL_DECODER_CTX *ctx);

int OSSL_DECODER_CTX_set_selection(OSSL_DECODER_CTX *ctx, int selection);

int OSSL_DECODER_CTX_set_input_type(OSSL_DECODER_CTX *ctx,

const char *input_type);

int OSSL_DECODER_CTX_set_input_structure(OSSL_DECODER_CTX *ctx,

const char *input_structure);

int OSSL_DECODER_CTX_add_decoder(OSSL_DECODER_CTX *ctx, OSSL_DECODER *decoder);

int OSSL_DECODER_CTX_add_extra(OSSL_DECODER_CTX *ctx,

OSSL_LIB_CTX *libctx,

const char *propq);

int OSSL_DECODER_CTX_get_num_decoders(OSSL_DECODER_CTX *ctx);

typedef struct ossl_decoder_instance_st OSSL_DECODER_INSTANCE;

OSSL_DECODER *

OSSL_DECODER_INSTANCE_get_decoder(OSSL_DECODER_INSTANCE *decoder_inst);

void *

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)



OSSL_DECODER_INSTANCE_get_decoder_ctx(OSSL_DECODER_INSTANCE *decoder_inst);

const char *

OSSL_DECODER_INSTANCE_get_input_type(OSSL_DECODER_INSTANCE *decoder_inst);

OSSL_DECODER_INSTANCE_get_input_structure(OSSL_DECODER_INSTANCE *decoder_inst,

int *was_set);

typedef int OSSL_DECODER_CONSTRUCT(OSSL_DECODER_INSTANCE *decoder_inst,

const OSSL_PARAM *object,

void *construct_data);

typedef void OSSL_DECODER_CLEANUP(void *construct_data);

int OSSL_DECODER_CTX_set_construct(OSSL_DECODER_CTX *ctx,

OSSL_DECODER_CONSTRUCT *construct);

int OSSL_DECODER_CTX_set_construct_data(OSSL_DECODER_CTX *ctx,

void *construct_data);

int OSSL_DECODER_CTX_set_cleanup(OSSL_DECODER_CTX *ctx,

OSSL_DECODER_CLEANUP *cleanup);

OSSL_DECODER_CONSTRUCT *OSSL_DECODER_CTX_get_construct(OSSL_DECODER_CTX *ctx);

void *OSSL_DECODER_CTX_get_construct_data(OSSL_DECODER_CTX *ctx);

OSSL_DECODER_CLEANUP *OSSL_DECODER_CTX_get_cleanup(OSSL_DECODER_CTX *ctx);

int OSSL_DECODER_export(OSSL_DECODER_INSTANCE *decoder_inst,

void *reference, size_t reference_sz,

OSSL_CALLBACK *export_cb, void *export_cbarg);

DESCRIPTION
The OSSL_DECODER_CTX holds data about multiple decoders, as needed to figure out what the

input data is and to attempt to unpack it into one of several possible related results. This also includes

chaining decoders, so the output from one can become the input for another. This allows having

generic format decoders such as PEM to DER, as well as more specialized decoders like DER to RSA.

The chains may be limited by specifying an input type, which is considered a starting point. This is

both considered by OSSL_DECODER_CTX_add_extra(), which will stop adding one more decoder

implementations when it has already added those that take the specified input type, and functions like

OSSL_DECODER_from_bio(3), which will only start the decoding process with the decoder

implementations that take that input type. For example, if the input type is set to "DER", a PEM to

DER decoder will be ignored.

The input type can also be NULL, which means that the caller doesn’t know what type of input they

have. In this case, OSSL_DECODER_from_bio() will simply try with one decoder implementation

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)



after the other, and thereby discover what kind of input the caller gave it.

For every decoding done, even an intermediary one, a constructor provided by the caller is called to

attempt to construct an appropriate type / structure that the caller knows how to handle from the current

decoding result. The constructor is set with OSSL_DECODER_CTX_set_construct().

OSSL_DECODER_INSTANCE is an opaque structure that contains data about the decoder that was

just used, and that may be useful for the constructor. There are some functions to extract data from this

type, described further down.

Functions
OSSL_DECODER_CTX_new() creates a new empty OSSL_DECODER_CTX.

OSSL_DECODER_settable_ctx_params() returns an OSSL_PARAM(3) array of parameter

descriptors.

OSSL_DECODER_CTX_set_params() attempts to set parameters specified with an OSSL_PARAM(3)

array params. These parameters are passed to all decoders that have been added to the ctx so far.

Parameters that an implementation doesn’t recognise should be ignored by it.

OSSL_DECODER_CTX_free() frees the given context ctx.

OSSL_DECODER_CTX_add_decoder() populates the OSSL_DECODER_CTX ctx with a decoder, to

be used to attempt to decode some encoded input.

OSSL_DECODER_CTX_add_extra() finds decoders that generate input for already added decoders,

and adds them as well. This is used to build decoder chains.

OSSL_DECODER_CTX_set_input_type() sets the starting input type. This limits the decoder chains

to be considered, as explained in the general description above.

OSSL_DECODER_CTX_set_input_structure() sets the name of the structure that the input is expected

to have. This may be used to determines what decoder implementations may be used. NULL is a valid

input structure, when it’s not relevant, or when the decoder implementations are expected to figure it

out.

OSSL_DECODER_CTX_get_num_decoders() gets the number of decoders currently added to the

context ctx.

OSSL_DECODER_CTX_set_construct() sets the constructor construct.

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)



OSSL_DECODER_CTX_set_construct_data() sets the constructor data that is passed to the constructor

every time it’s called.

OSSL_DECODER_CTX_set_cleanup() sets the constructor data cleanup function. This is called by

OSSL_DECODER_CTX_free(3).

OSSL_DECODER_CTX_get_construct(), OSSL_DECODER_CTX_get_construct_data() and

OSSL_DECODER_CTX_get_cleanup() return the values that have been set by

OSSL_DECODER_CTX_set_construct(), OSSL_DECODER_CTX_set_construct_data() and

OSSL_DECODER_CTX_set_cleanup() respectively.

OSSL_DECODER_export() is a fallback function for constructors that cannot use the data they get

directly for diverse reasons. It takes the same decode instance decoder_inst that the constructor got and

an object reference, unpacks the object which it refers to, and exports it by creating an

OSSL_PARAM(3) array that it then passes to export_cb, along with export_arg.

Constructor
A OSSL_DECODER_CONSTRUCT gets the following arguments:

decoder_inst

The OSSL_DECODER_INSTANCE for the decoder from which the constructor gets its data.

object

A provider-native object abstraction produced by the decoder. Further information on the

provider-native object abstraction can be found in provider-object(7).

construct_data

The pointer that was set with OSSL_DECODE_CTX_set_construct_data().

The constructor is expected to return 1 when the data it receives can be constructed, otherwise 0.

These utility functions may be used by a constructor:

OSSL_DECODER_INSTANCE_get_decoder() can be used to get the decoder implementation from a

decoder instance decoder_inst.

OSSL_DECODER_INSTANCE_get_decoder_ctx() can be used to get the decoder implementation’s

provider context from a decoder instance decoder_inst.

OSSL_DECODER_INSTANCE_get_input_type() can be used to get the decoder implementation’s

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)



input type from a decoder instance decoder_inst.

OSSL_DECODER_INSTANCE_get_input_structure() can be used to get the input structure for the

decoder implementation from a decoder instance decoder_inst. This may be NULL.

RETURN VALUES
OSSL_DECODER_CTX_new() returns a pointer to a OSSL_DECODER_CTX, or NULL if the

context structure couldn’t be allocated.

OSSL_DECODER_settable_ctx_params() returns an OSSL_PARAM(3) array, or NULL if none is

available.

OSSL_DECODER_CTX_set_params() returns 1 if all recognised parameters were valid, or 0 if one of

them was invalid or caused some other failure in the implementation.

OSSL_DECODER_CTX_add_decoder(), OSSL_DECODER_CTX_add_extra(),
OSSL_DECODER_CTX_set_construct(), OSSL_DECODER_CTX_set_construct_data() and

OSSL_DECODER_CTX_set_cleanup() return 1 on success, or 0 on failure.

OSSL_DECODER_CTX_get_construct(), OSSL_DECODER_CTX_get_construct_data() and

OSSL_DECODER_CTX_get_cleanup() return the current pointers to the constructor, the constructor

data and the cleanup functions, respectively.

OSSL_DECODER_CTX_num_decoders() returns the current number of decoders. It returns 0 if ctx is

NULL.

OSSL_DECODER_export() returns 1 on success, or 0 on failure.

OSSL_DECODER_INSTANCE_decoder() returns an OSSL_DECODER pointer on success, or NULL

on failure.

OSSL_DECODER_INSTANCE_decoder_ctx() returns a provider context pointer on success, or

NULL on failure.

SEE ALSO
provider(7), OSSL_DECODER(3), OSSL_DECODER_from_bio(3)

HISTORY
The functions described here were added in OpenSSL 3.0.

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)



COPYRIGHT
Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OSSL_DECODER_CTX(3ossl) OpenSSL OSSL_DECODER_CTX(3ossl)

3.0.11 2023-09-19 OSSL_DECODER_CTX(3ossl)


