
NAME
OSSL_PROVIDER_set_default_search_path, OSSL_PROVIDER, OSSL_PROVIDER_load,

OSSL_PROVIDER_try_load, OSSL_PROVIDER_unload, OSSL_PROVIDER_available,

OSSL_PROVIDER_do_all, OSSL_PROVIDER_gettable_params, OSSL_PROVIDER_get_params,

OSSL_PROVIDER_query_operation, OSSL_PROVIDER_unquery_operation,

OSSL_PROVIDER_get0_provider_ctx, OSSL_PROVIDER_get0_dispatch,

OSSL_PROVIDER_add_builtin, OSSL_PROVIDER_get0_name,

OSSL_PROVIDER_get_capabilities, OSSL_PROVIDER_self_test - provider routines

SYNOPSIS
#include <openssl/provider.h>

typedef struct ossl_provider_st OSSL_PROVIDER;

int OSSL_PROVIDER_set_default_search_path(OSSL_LIB_CTX *libctx,

const char *path);

OSSL_PROVIDER *OSSL_PROVIDER_load(OSSL_LIB_CTX *libctx, const char *name);

OSSL_PROVIDER *OSSL_PROVIDER_try_load(OSSL_LIB_CTX *libctx, const char *name,

int retain_fallbacks);

int OSSL_PROVIDER_unload(OSSL_PROVIDER *prov);

int OSSL_PROVIDER_available(OSSL_LIB_CTX *libctx, const char *name);

int OSSL_PROVIDER_do_all(OSSL_LIB_CTX *ctx,

int (*cb)(OSSL_PROVIDER *provider, void *cbdata),

void *cbdata);

const OSSL_PARAM *OSSL_PROVIDER_gettable_params(OSSL_PROVIDER *prov);

int OSSL_PROVIDER_get_params(OSSL_PROVIDER *prov, OSSL_PARAM params[]);

const OSSL_ALGORITHM *OSSL_PROVIDER_query_operation(const OSSL_PROVIDER *prov,

int operation_id,

int *no_cache);

void OSSL_PROVIDER_unquery_operation(const OSSL_PROVIDER *prov,

int operation_id,

const OSSL_ALGORITHM *algs);

void *OSSL_PROVIDER_get0_provider_ctx(const OSSL_PROVIDER *prov);

const OSSL_DISPATCH *OSSL_PROVIDER_get0_dispatch(const OSSL_PROVIDER *prov);

int OSSL_PROVIDER_add_builtin(OSSL_LIB_CTX *libctx, const char *name,

ossl_provider_init_fn *init_fn);

OSSL_PROVIDER(3ossl) OpenSSL OSSL_PROVIDER(3ossl)

3.0.11 2023-09-19 OSSL_PROVIDER(3ossl)



const char *OSSL_PROVIDER_get0_name(const OSSL_PROVIDER *prov);

int OSSL_PROVIDER_get_capabilities(const OSSL_PROVIDER *prov,

const char *capability,

OSSL_CALLBACK *cb,

void *arg);

int OSSL_PROVIDER_self_test(const OSSL_PROVIDER *prov);

DESCRIPTION
OSSL_PROVIDER is a type that holds internal information about implementation providers (see

provider(7) for information on what a provider is). A provider can be built in to the application or the

OpenSSL libraries, or can be a loadable module. The functions described here handle both forms.

Some of these functions operate within a library context, please see OSSL_LIB_CTX(3) for further

details.

Functions
OSSL_PROVIDER_set_default_search_path() specifies the default search path that is to be used for

looking for providers in the specified libctx. If left unspecified, an environment variable and a fall

back default value will be used instead.

OSSL_PROVIDER_add_builtin() is used to add a built in provider to OSSL_PROVIDER store in the

given library context, by associating a provider name with a provider initialization function. This name

can then be used with OSSL_PROVIDER_load().

OSSL_PROVIDER_load() loads and initializes a provider. This may simply initialize a provider that

was previously added with OSSL_PROVIDER_add_builtin() and run its given initialization function,

or load a provider module with the given name and run its provider entry point, "OSSL_provider_init".

The name can be a path to a provider module, in that case the provider name as returned by

OSSL_PROVIDER_get0_name() will be the path. Interpretation of relative paths is platform

dependent and they are relative to the configured "MODULESDIR" directory or the path set in the

environment variable OPENSSL_MODULES if set.

OSSL_PROVIDER_try_load() functions like OSSL_PROVIDER_load(), except that it does not

disable the fallback providers if the provider cannot be loaded and initialized or if retain_fallbacks is

nonzero. If the provider loads successfully and retain_fallbacks is zero, the fallback providers are

disabled.

OSSL_PROVIDER_unload() unloads the given provider. For a provider added with

OSSL_PROVIDER_add_builtin(), this simply runs its teardown function.

OSSL_PROVIDER(3ossl) OpenSSL OSSL_PROVIDER(3ossl)

3.0.11 2023-09-19 OSSL_PROVIDER(3ossl)



OSSL_PROVIDER_available() checks if a named provider is available for use.

OSSL_PROVIDER_do_all() iterates over all loaded providers, calling cb for each one, with the current

provider in provider and the cbdata that comes from the caller. If no other provider has been loaded

before calling this function, the default provider is still available as fallback. See

OSSL_PROVIDER-default(7) for more information on this fallback behaviour.

OSSL_PROVIDER_gettable_params() is used to get a provider parameter descriptor set as a constant

OSSL_PARAM(3) array.

OSSL_PROVIDER_get_params() is used to get provider parameter values. The caller must prepare

the OSSL_PARAM(3) array before calling this function, and the variables acting as buffers for this

parameter array should be filled with data when it returns successfully.

OSSL_PROVIDER_self_test() is used to run a provider’s self tests on demand. If the self tests fail

then the provider will fail to provide any further services and algorithms.

OSSL_SELF_TEST_set_callback(3) may be called beforehand in order to display diagnostics for the

running self tests.

OSSL_PROVIDER_query_operation() calls the provider’s query_operation function (see provider(7)),

if the provider has one. It returns an array of OSSL_ALGORITHM for the given operation_id

terminated by an all NULL OSSL_ALGORITHM entry. This is considered a low-level function that

most applications should not need to call.

OSSL_PROVIDER_unquery_operation() calls the provider’s unquery_operation function (see

provider(7)), if the provider has one. This is considered a low-level function that most applications

should not need to call.

OSSL_PROVIDER_get0_provider_ctx() returns the provider context for the given provider. The

provider context is an opaque handle set by the provider itself and is passed back to the provider by

libcrypto in various function calls.

OSSL_PROVIDER_get0_dispatch() returns the provider’s dispatch table as it was returned in the out

parameter from the provider’s init function. See provider-base(7).

If it is permissible to cache references to this array then *no_store is set to 0 or 1 otherwise. If the array

is not cacheable then it is assumed to have a short lifetime.

OSSL_PROVIDER_get0_name() returns the name of the given provider.

OSSL_PROVIDER(3ossl) OpenSSL OSSL_PROVIDER(3ossl)

3.0.11 2023-09-19 OSSL_PROVIDER(3ossl)



OSSL_PROVIDER_get_capabilities() provides information about the capabilities supported by the

provider specified in prov with the capability name capability. For each capability of that name

supported by the provider it will call the callback cb and supply a set of OSSL_PARAM(3)s describing

the capability. It will also pass back the argument arg. For more details about capabilities and what they

can be used for please see "CAPABILTIIES" in provider-base(7).

RETURN VALUES
OSSL_PROVIDER_set_default_search_path(), OSSL_PROVIDER_add(),
OSSL_PROVIDER_unload(), OSSL_PROVIDER_get_params() and

OSSL_PROVIDER_get_capabilities() return 1 on success, or 0 on error.

OSSL_PROVIDER_load() and OSSL_PROVIDER_try_load() return a pointer to a provider object on

success, or NULL on error.

OSSL_PROVIDER_do_all() returns 1 if the callback cb returns 1 for every provider it is called with, or

0 if any provider callback invocation returns 0; callback processing stops at the first callback

invocation on a provider that returns 0.

OSSL_PROVIDER_available() returns 1 if the named provider is available, otherwise 0.

OSSL_PROVIDER_gettable_params() returns a pointer to an array of constant OSSL_PARAM(3), or

NULL if none is provided.

OSSL_PROVIDER_get_params() and returns 1 on success, or 0 on error.

OSSL_PROVIDER_query_operation() returns an array of OSSL_ALGORITHM or NULL on error.

OSSL_PROVIDER_self_test() returns 1 if the self tests pass, or 0 on error.

EXAMPLES
This demonstrates how to load the provider module "foo" and ask for its build information.

#include <openssl/params.h>

#include <openssl/provider.h>

#include <openssl/err.h>

OSSL_PROVIDER *prov = NULL;

const char *build = NULL;

OSSL_PARAM request[] = {

{ "buildinfo", OSSL_PARAM_UTF8_PTR, &build, 0, 0 },

OSSL_PROVIDER(3ossl) OpenSSL OSSL_PROVIDER(3ossl)

3.0.11 2023-09-19 OSSL_PROVIDER(3ossl)



{ NULL, 0, NULL, 0, 0 }

};

if ((prov = OSSL_PROVIDER_load(NULL, "foo")) != NULL

&& OSSL_PROVIDER_get_params(prov, request))

printf("Provider ’foo’ buildinfo: %s\n", build);

else

ERR_print_errors_fp(stderr);

SEE ALSO
openssl-core.h(7), OSSL_LIB_CTX(3), provider(7)

HISTORY
The type and functions described here were added in OpenSSL 3.0.

COPYRIGHT
Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OSSL_PROVIDER(3ossl) OpenSSL OSSL_PROVIDER(3ossl)

3.0.11 2023-09-19 OSSL_PROVIDER(3ossl)


