
NAME
Opcode - Disable named opcodes when compiling perl code

SYNOPSIS
use Opcode;

DESCRIPTION
Perl code is always compiled into an internal format before execution.

Evaluating perl code (e.g. via "eval" or "do ’file’") causes the code to be compiled into an internal

format and then, provided there was no error in the compilation, executed. The internal format is based

on many distinct opcodes.

By default no opmask is in effect and any code can be compiled.

The Opcode module allow you to define an operator mask to be in effect when perl next compiles any

code. Attempting to compile code which contains a masked opcode will cause the compilation to fail

with an error. The code will not be executed.

NOTE
The Opcode module is not usually used directly. See the ops pragma and Safe modules for more typical

uses.

WARNING
The Opcode module does not implement an effective sandbox for evaluating untrusted code with the

perl interpreter.

Bugs in the perl interpreter that could be abused to bypass Opcode restrictions are not treated as

vulnerabilities. See perlsecpolicy for additional information.

The authors make no warranty, implied or otherwise, about the suitability of this software for safety or

security purposes.

The authors shall not in any case be liable for special, incidental, consequential, indirect or other

similar damages arising from the use of this software.

Your mileage will vary. If in any doubt do not use it.

Operator Names and Operator Lists
The canonical list of operator names is the contents of the array PL_op_name defined and initialised in

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

file opcode.h of the Perl source distribution (and installed into the perl library).

Each operator has both a terse name (its opname) and a more verbose or recognisable descriptive name.

The opdesc function can be used to return a list of descriptions for a list of operators.

Many of the functions and methods listed below take a list of operators as parameters. Most operator

lists can be made up of several types of element. Each element can be one of

an operator name (opname)

Operator names are typically small lowercase words like enterloop, leaveloop, last, next, redo

etc. Sometimes they are rather cryptic like gv2cv, i_ncmp and ftsvtx.

an operator tag name (optag)

Operator tags can be used to refer to groups (or sets) of operators. Tag names always begin

with a colon. The Opcode module defines several optags and the user can define others using

the define_optag function.

a negated opname or optag

An opname or optag can be prefixed with an exclamation mark, e.g., !mkdir. Negating an

opname or optag means remove the corresponding ops from the accumulated set of ops at

that point.

an operator set (opset)

An opset as a binary string of approximately 44 bytes which holds a set or zero or more

operators.

The opset and opset_to_ops functions can be used to convert from a list of operators to an

opset and vice versa.

Wherever a list of operators can be given you can use one or more opsets. See also

Manipulating Opsets below.

Opcode Functions
The Opcode package contains functions for manipulating operator names tags and sets. All are

available for export by the package.

opcodes In a scalar context opcodes returns the number of opcodes in this version of perl (around 350

for perl-5.7.0).

In a list context it returns a list of all the operator names. (Not yet implemented, use @names

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

= opset_to_ops(full_opset).)

opset (OP, ...)

Returns an opset containing the listed operators.

opset_to_ops (OPSET)

Returns a list of operator names corresponding to those operators in the set.

opset_to_hex (OPSET)

Returns a string representation of an opset. Can be handy for debugging.

full_opset

Returns an opset which includes all operators.

empty_opset

Returns an opset which contains no operators.

invert_opset (OPSET)

Returns an opset which is the inverse set of the one supplied.

verify_opset (OPSET, ...)

Returns true if the supplied opset looks like a valid opset (is the right length etc) otherwise it

returns false. If an optional second parameter is true then verify_opset will croak on an

invalid opset instead of returning false.

Most of the other Opcode functions call verify_opset automatically and will croak if given an

invalid opset.

define_optag (OPTAG, OPSET)

Define OPTAG as a symbolic name for OPSET. Optag names always start with a colon ":".

The optag name used must not be defined already (define_optag will croak if it is already

defined). Optag names are global to the perl process and optag definitions cannot be altered

or deleted once defined.

It is strongly recommended that applications using Opcode should use a leading capital letter

on their tag names since lowercase names are reserved for use by the Opcode module. If

using Opcode within a module you should prefix your tags names with the name of your

module to ensure uniqueness and thus avoid clashes with other modules.

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

opmask_add (OPSET)

Adds the supplied opset to the current opmask. Note that there is currently no mechanism for

unmasking ops once they have been masked. This is intentional.

opmask Returns an opset corresponding to the current opmask.

opdesc (OP, ...)

This takes a list of operator names and returns the corresponding list of operator descriptions.

opdump (PAT)

Dumps to STDOUT a two column list of op names and op descriptions. If an optional

pattern is given then only lines which match the (case insensitive) pattern will be output.

It’s designed to be used as a handy command line utility:

perl -MOpcode=opdump -e opdump

perl -MOpcode=opdump -e ’opdump Eval’

Manipulating Opsets
Opsets may be manipulated using the perl bit vector operators & (and), | (or), ^ (xor) and ~

(negate/invert).

However you should never rely on the numerical position of any opcode within the opset. In other

words both sides of a bit vector operator should be opsets returned from Opcode functions.

Also, since the number of opcodes in your current version of perl might not be an exact multiple of

eight, there may be unused bits in the last byte of an upset. This should not cause any problems

(Opcode functions ignore those extra bits) but it does mean that using the ~ operator will typically not

produce the same ’physical’ opset ’string’ as the invert_opset function.

TO DO (maybe)
$bool = opset_eq($opset1, $opset2) true if opsets are logically

equivalent

$yes = opset_can($opset, @ops) true if $opset has all @ops set

@diff = opset_diff($opset1, $opset2) => (’foo’, ’!bar’, ...)

Predefined Opcode Tags
:base_core

null stub scalar pushmark wantarray const defined undef

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

rv2sv sassign

rv2av aassign aelem aelemfast aelemfast_lex aslice kvaslice

av2arylen

rv2hv helem hslice kvhslice each values keys exists delete

aeach akeys avalues multideref argelem argdefelem argcheck

preinc i_preinc predec i_predec postinc i_postinc

postdec i_postdec int hex oct abs pow multiply i_multiply

divide i_divide modulo i_modulo add i_add subtract i_subtract

left_shift right_shift bit_and bit_xor bit_or nbit_and

nbit_xor nbit_or sbit_and sbit_xor sbit_or negate i_negate not

complement ncomplement scomplement

lt i_lt gt i_gt le i_le ge i_ge eq i_eq ne i_ne ncmp i_ncmp

slt sgt sle sge seq sne scmp

isa

substr vec stringify study pos length index rindex ord chr

ucfirst lcfirst uc lc fc quotemeta trans transr chop schop

chomp schomp

match split qr

list lslice splice push pop shift unshift reverse

cond_expr flip flop andassign orassign dorassign and or dor xor

warn die lineseq nextstate scope enter leave

rv2cv anoncode prototype coreargs avhvswitch anonconst

entersub leavesub leavesublv return method method_named

method_super method_redir method_redir_super

-- XXX loops via recursion?

cmpchain_and cmpchain_dup

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

leaveeval -- needed for Safe to operate, is safe

without entereval

:base_mem

These memory related ops are not included in :base_core because they can easily be used to

implement a resource attack (e.g., consume all available memory).

concat multiconcat repeat join range

anonlist anonhash

Note that despite the existence of this optag a memory resource attack may still be possible using

only :base_core ops.

Disabling these ops is a very heavy handed way to attempt to prevent a memory resource attack.

It’s probable that a specific memory limit mechanism will be added to perl in the near future.

:base_loop

These loop ops are not included in :base_core because they can easily be used to implement a

resource attack (e.g., consume all available CPU time).

grepstart grepwhile

mapstart mapwhile

enteriter iter

enterloop leaveloop unstack

last next redo

goto

:base_io

These ops enable filehandle (rather than filename) based input and output. These are safe on the

assumption that only pre-existing filehandles are available for use. Usually, to create new

filehandles other ops such as open would need to be enabled, if you don’t take into account the

magical open of ARGV.

readline rcatline getc read

formline enterwrite leavewrite

print say sysread syswrite send recv

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

eof tell seek sysseek

readdir telldir seekdir rewinddir

:base_orig

These are a hotchpotch of opcodes still waiting to be considered

gvsv gv gelem

padsv padav padhv padcv padany padrange introcv clonecv

once

rv2gv refgen srefgen ref refassign lvref lvrefslice lvavref

bless -- could be used to change ownership of objects

(reblessing)

regcmaybe regcreset regcomp subst substcont

sprintf prtf -- can core dump

crypt

tie untie

dbmopen dbmclose

sselect select

pipe_op sockpair

getppid getpgrp setpgrp getpriority setpriority

localtime gmtime

entertry leavetry -- can be used to ’hide’ fatal errors

entertrycatch poptry catch leavetrycatch -- similar

entergiven leavegiven

enterwhen leavewhen

break continue

smartmatch

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

custom -- where should this go

:base_math

These ops are not included in :base_core because of the risk of them being used to generate

floating point exceptions (which would have to be caught using a $SIG{FPE} handler).

atan2 sin cos exp log sqrt

These ops are not included in :base_core because they have an effect beyond the scope of the

compartment.

rand srand

:base_thread

These ops are related to multi-threading.

lock

:default

A handy tag name for a reasonable default set of ops. (The current ops allowed are unstable

while development continues. It will change.)

:base_core :base_mem :base_loop :base_orig :base_thread

This list used to contain :base_io prior to Opcode 1.07.

If safety matters to you (and why else would you be using the Opcode module?) then you should

not rely on the definition of this, or indeed any other, optag!

:filesys_read

stat lstat readlink

ftatime ftblk ftchr ftctime ftdir fteexec fteowned

fteread ftewrite ftfile ftis ftlink ftmtime ftpipe

ftrexec ftrowned ftrread ftsgid ftsize ftsock ftsuid

fttty ftzero ftrwrite ftsvtx

fttext ftbinary

fileno

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

:sys_db

ghbyname ghbyaddr ghostent shostent ehostent -- hosts

gnbyname gnbyaddr gnetent snetent enetent -- networks

gpbyname gpbynumber gprotoent sprotoent eprotoent -- protocols

gsbyname gsbyport gservent sservent eservent -- services

gpwnam gpwuid gpwent spwent epwent getlogin -- users

ggrnam ggrgid ggrent sgrent egrent -- groups

:browse

A handy tag name for a reasonable default set of ops beyond the :default optag. Like :default

(and indeed all the other optags) its current definition is unstable while development continues. It

will change.

The :browse tag represents the next step beyond :default. It is a superset of the :default ops and

adds :filesys_read the :sys_db. The intent being that scripts can access more (possibly sensitive)

information about your system but not be able to change it.

:default :filesys_read :sys_db

:filesys_open

sysopen open close

umask binmode

open_dir closedir -- other dir ops are in :base_io

:filesys_write

link unlink rename symlink truncate

mkdir rmdir

utime chmod chown

fcntl -- not strictly filesys related, but possibly as

dangerous?

:subprocess

backtick system

fork

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

wait waitpid

glob -- access to Cshell via <‘rm *‘>

:ownprocess

exec exit kill

time tms -- could be used for timing attacks (paranoid?)

:others

This tag holds groups of assorted specialist opcodes that don’t warrant having optags defined for

them.

SystemV Interprocess Communications:

msgctl msgget msgrcv msgsnd

semctl semget semop

shmctl shmget shmread shmwrite

:load This tag holds opcodes related to loading modules and getting information about calling

environment and args.

require dofile

caller runcv

:still_to_be_decided

chdir

flock ioctl

socket getpeername ssockopt

bind connect listen accept shutdown gsockopt getsockname

sleep alarm -- changes global timer state and signal handling

sort -- assorted problems including core dumps

tied -- can be used to access object implementing a tie

pack unpack -- can be used to create/use memory pointers

hintseval -- constant op holding eval hints

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

entereval -- can be used to hide code from initial compile

reset

dbstate -- perl -d version of nextstate(ment) opcode

:dangerous

This tag is simply a bucket for opcodes that are unlikely to be used via a tag name but need to be

tagged for completeness and documentation.

syscall dump chroot

SEE ALSO
ops -- perl pragma interface to Opcode module.

Safe -- Opcode and namespace limited execution compartments

AUTHORS
Originally designed and implemented by Malcolm Beattie, mbeattie@sable.ox.ac.uk as part of Safe

version 1.

Split out from Safe module version 1, named opcode tags and other changes added by Tim Bunce.

Opcode(3) Perl Programmers Reference Guide Opcode(3)

perl v5.34.3 2023-11-28 Opcode(3)

