
NAME
XkbAddDeviceLedInfo - Initialize an XkbDeviceLedInfoRec structure

SYNOPSIS
XkbDeviceLedInfoPtr XkbAddDeviceLedInfo (XkbDeviceInfoPtr device_info, unsigned int led_class,

unsigned int led_id);

ARGUMENTS
device_info

structure in which to add LED info

led_class

input extension class for LED device of interest

led_id

input extension ID for LED device of interest

DESCRIPTION
XkbAddDeviceLedInfo first checks to see whether an entry matching led_class and led_id already

exists in the device_info->leds array. If it finds a matching entry, it returns a pointer to that entry.

Otherwise, it checks to be sure there is at least one empty entry in device_info->leds and extends it if

there is not enough room. It then increments device_info->num_leds and fills in the next available

entry in device_info->leds with led_class and led_id.

If successful, XkbAddDeviceLedInfo returns a pointer to the XkbDeviceLedInfoRec structure that was

initialized. If unable to allocate sufficient storage, or if device_info points to an invalid

XkbDeviceInfoRec structure, or if led_class or led_id are inappropriate, XkbAddDeviceLedInfo returns

NULL.

To allocate additional space for button actions in an XkbDeviceInfoRec structure, use

XkbResizeDeviceButtonActions.

STRUCTURES
Information about X Input Extension devices is transferred between a client program and the Xkb

extension in an XkbDeviceInfoRec structure:

typedef struct {

char * name; /* name for device */

Atom type; /* name for class of devices */

XkbAddDeviceLedInfo(3) XKB FUNCTIONS XkbAddDeviceLedInfo(3)

X Version 11 libX11 1.8.7 XkbAddDeviceLedInfo(3)



unsigned short device_spec; /* device of interest */

Bool has_own_state; /* True=>this device has its own state */

unsigned short supported; /* bits indicating supported capabilities */

unsigned short unsupported; /* bits indicating unsupported capabilities */

unsigned short num_btns; /* number of entries in btn_acts */

XkbAction * btn_acts; /* button actions */

unsigned short sz_leds; /* total number of entries in LEDs vector */

unsigned short num_leds; /* number of valid entries in LEDs vector */

unsigned short dflt_kbd_fb; /* input extension ID of default (core kbd) indicator */

unsigned short dflt_led_fb; /* input extension ID of default indicator feedback */

XkbDeviceLedInfoPtr leds; /* LED descriptions */

} XkbDeviceInfoRec, *XkbDeviceInfoPtr;

typedef struct {

unsigned short led_class; /* class for this LED device*/

unsigned short led_id; /* ID for this LED device */

unsigned int phys_indicators; /* bits for which LEDs physically present */

unsigned int maps_present; /* bits for which LEDs have maps in maps */

unsigned int names_present; /* bits for which LEDs are in names */

unsigned int state; /* 1 bit => corresponding LED is on */

Atom names[XkbNumIndicators]; /* names for LEDs */

XkbIndicatorMapRec maps; /* indicator maps for each LED */

} XkbDeviceLedInfoRec, *XkbDeviceLedInfoPtr;

SEE ALSO
XkbResizeDeviceButtonActions(3)

XkbAddDeviceLedInfo(3) XKB FUNCTIONS XkbAddDeviceLedInfo(3)

X Version 11 libX11 1.8.7 XkbAddDeviceLedInfo(3)


