
NAME
XkbForceBell - Overrides user preference settings for audible bells to ring the bell on the default

keyboard

SYNOPSIS
Bool XkbForceBell (Display *display, int percent);

ARGUMENTS
display

connection to the X server

percent

volume for the bell, which can range from -100 to 100 inclusive

DESCRIPTION
The core X protocol allows only applications to explicitly sound the system bell with a given duration,

pitch, and volume. Xkb extends this capability by allowing clients to attach symbolic names to bells,

disable audible bells, and receive an event whenever the keyboard bell is rung. For the purposes of this

document, the audible bell is defined to be the system bell, or the default keyboard bell, as opposed to

any other audible sound generated elsewhere in the system. You can ask to receive XkbBellNotify

events when any client rings any one of the following:

+o The default bell

+o Any bell on an input device that can be specified by a bell_class and bell_id pair

+o Any bell specified only by an arbitrary name. (This is, from the server’s point of view, merely a

name, and not connected with any physical sound-generating device. Some client application

must generate the sound, or visual feedback, if any, that is associated with the name.)

You can also ask to receive XkbBellNotify events when the server rings the default bell or if any client

has requested events only (without the bell sounding) for any of the bell types previously listed.

You can disable audible bells on a global basis. For example, a client that replaces the keyboard bell

with some other audible cue might want to turn off the AudibleBell control to prevent the server from

also generating a sound and avoid cacophony. If you disable audible bells and request to receive

XkbBellNotify events, you can generate feedback different from the default bell.

XkbForceBell(3) XKB FUNCTIONS XkbForceBell(3)

X Version 11 libX11 1.8.7 XkbForceBell(3)



You can, however, override the AudibleBell control by calling one of the functions that force the

ringing of a bell in spite of the setting of the AudibleBell control - XkbForceDeviceBell or

XkbForceBell. In this case the server does not generate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeating, Xkb can

provide feedback for the controls by using special beep codes. The AccessXFeedback control is used

to configure the specific types of operations that generate feedback.

Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom and then using

this name when you call the functions listed in this chapter. If an event is generated as a result, the

name is then passed to all other clients interested in receiving XkbBellNotify events. Note that these

are arbitrary names and that there is no binding to any sounds. Any sounds or other effects (such as

visual bells on the screen) must be generated by a client application upon receipt of the bell event

containing the name. There is no default name for the default keyboard bell. The server does generate

some predefined bells for the AccessX controls. These named bells are shown in the Table 1; the name

is included in any bell event sent to clients that have requested to receive XkbBellNotify events.

Table 1 Predefined

Bells

--------------------------------------------------------------------------------------------------------------

Action Named

Bell

--------------------------------------------------------------------------------------------------------------

Indicator turned AX_IndicatorOn

on

Indicator turned AX_IndicatorOff

off

More than one indicator changed AX_IndicatorChange

state

Control turned AX_FeatureOn

on

Control turned AX_FeatureOff

off

More than one control changed AX_FeatureChange

state

SlowKeys and BounceKeys about to be turned on or AX_SlowKeysWarning

off

XkbForceBell(3) XKB FUNCTIONS XkbForceBell(3)

X Version 11 libX11 1.8.7 XkbForceBell(3)



SlowKeys key AX_SlowKeyPress

pressed

SlowKeys key AX_SlowKeyAccept

accepted

SlowKeys key AX_SlowKeyReject

rejected

Accepted SlowKeys key AX_SlowKeyRelease

released

BounceKeys key AX_BounceKeyReject

rejected

StickyKeys key AX_StickyLatch

latched

StickyKeys key AX_StickyLock

locked

StickyKeys key AX_StickyUnlock

unlocked

Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This is useful if

you need to use an audio server instead of the system beep. For example, when an audio client starts, it

could disable the audible bell (the system bell) and then listen for XkbBellNotify events. When it

receives a XkbBellNotify event, the audio client could then send a request to an audio server to play a

sound.

You can control the audible bells feature by passing the XkbAudibleBellMask to

XkbChangeEnabledControls. If you set XkbAudibleBellMask on, the server rings the system bell

when a bell event occurs. This is the default. If you set XkbAudibleBellMask off and a bell event

occurs, the server does not ring the system bell unless you call XkbForceDeviceBell or XkbForceBell.

Audible bells are also part of the per-client auto-reset controls.

Bell Functions

Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells - bell feedback and keyboard

feedback. Some of the functions in this section have bell_class and bell_id parameters; set them as

follows: Set bell_class to BellFeedbackClass or KbdFeedbackClass. A device can have more than one

feedback of each type; set bell_id to the particular bell feedback of bell_class type.

XkbForceBell(3) XKB FUNCTIONS XkbForceBell(3)

X Version 11 libX11 1.8.7 XkbForceBell(3)



Table 2 shows the conditions that cause a bell to sound or an XkbBellNotifyEvent to be generated

when a bell function is called.

Table 2 Bell Sounding and Bell Event

Generating

--------------------------------------------------------------------------------------------

Function AudibleBellServer sounds a bellServer sends an

called

XkbBellNotifyEvent

--------------------------------------------------------------------------------------------

XkbDeviceBell On Yes Yes

XkbDeviceBell Off No Yes

XkbBell On Yes Yes

XkbBell Off No Yes

XkbDeviceBellEventOn or No Yes

Off

XkbBellEvent On or No Yes

Off

XkbDeviceForceBellOn or Yes No

Off

XkbForceBell On or Yes No

Off

If a compatible keyboard extension isn’t present in the X server, XkbForceBell calls XBell with the

specified display and percent and returns False. Otherwise, XkbForceBell calls XkbForceDeviceBell

with the specified display and percent, device_spec =XkbUseCoreKbd, bell_class = XkbDfltXIClass,

bell_id = XkbDfltXIId, window = None, and name = NULL, and returns what XkbForceDeviceBell

returns.

XkbForceBell does not cause an XkbBellNotify event.

You can call XkbBell without first initializing the keyboard extension.

RETURNS VALUES
False The XkbForceBell function returns False when a compatible keyboard extension

isn’t present in the X server.

STRUCTURES

XkbForceBell(3) XKB FUNCTIONS XkbForceBell(3)

X Version 11 libX11 1.8.7 XkbForceBell(3)



Xkb generates XkbBellNotify events for all bells except for those resulting from calls to

XkbForceDeviceBell and XkbForceBell. To receive XkbBellNotify events under all possible

conditions, pass XkbBellNotifyMask in both the bits_to_change and values_for_bits parameters to

XkbSelectEvents.

The XkbBellNotify event has no event details. It is either selected or it is not. However, you can call

XkbSelectEventDetails using XkbBellNotify as the event_type and specifying XkbAllBellEventsMask

in bits_to_change and values_for_bits. This has the same effect as a call to XkbSelectEvents.

The structure for the XkbBellNotify event type contains:

typedef struct _XkbBellNotify {

int type; /* Xkb extension base event code */

unsigned long serial; /* X server serial number for event */

Bool send_event; /* True => synthetically generated */

Display * display; /* server connection where event generated */

Time time; /* server time when event generated */

int xkb_type; /* XkbBellNotify */

unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */

int percent; /* requested volume as % of max */

int pitch; /* requested pitch in Hz */

int duration; /* requested duration in microseconds */

unsigned int bell_class; /* X input extension feedback class */

unsigned int bell_id; /* X input extension feedback ID */

Atom name; /* "name" of requested bell */

Window window; /* window associated with event */

Bool event_only; /* False -> the server did not produce a beep */

} XkbBellNotifyEvent;

If your application needs to generate visual bell feedback on the screen when it receives a bell event,

use the window ID in the XkbBellNotifyEvent, if present.

SEE ALSO
XBell(3), XkbBell(3), XkbChangeEnabledControls(3), XkbForceDeviceBell(3),

XkbSelectEventDetails(3), XkbSelectEvents(3)

XkbForceBell(3) XKB FUNCTIONS XkbForceBell(3)

X Version 11 libX11 1.8.7 XkbForceBell(3)


