
NAME
apxs - APache eXtenSion tool

SYNOPSIS
apxs -g [-S name=value] -n modname

apxs -q [-v] [-S name=value] query ...

apxs -c [-S name=value] [-o dsofile] [-I incdir] [-D name=value] [-L libdir] [-l libname] [

-Wc,compiler-flags] [-Wl,linker-flags] files ...

apxs -i [-S name=value] [-n modname] [-a] [-A] dso-file ...

apxs -e [-S name=value] [-n modname] [-a] [-A] dso-file ...

SUMMARY
apxs is a tool for building and installing extension modules for the Apache HyperText Transfer

Protocol (HTTP) server. This is achieved by building a dynamic shared object (DSO) from one or more

source or object files which then can be loaded into the Apache server under runtime via the

LoadModule directive from mod_so.

So to use this extension mechanism your platform has to support the DSO feature and your Apache

httpd binary has to be built with the mod_so module. The apxs tool automatically complains if this is

not the case. You can check this yourself by manually running the command

$ httpd -l

The module mod_so should be part of the displayed list. If these requirements are fulfilled you can

easily extend your Apache server’s functionality by installing your own modules with the DSO

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

mechanism by the help of this apxs tool:

$ apxs -i -a -c mod_foo.c

gcc -fpic -DSHARED_MODULE -I/path/to/apache/include -c mod_foo.c

ld -Bshareable -o mod_foo.so mod_foo.o

cp mod_foo.so /path/to/apache/modules/mod_foo.so

chmod 755 /path/to/apache/modules/mod_foo.so

[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]

$ apachectl restart

/path/to/apache/sbin/apachectl restart: httpd not running, trying to start

[Tue Mar 31 11:27:55 1998] [debug] mod_so.c(303): loaded module foo_module

/path/to/apache/sbin/apachectl restart: httpd started

$ _

The arguments files can be any C source file (.c), a object file (.o) or even a library archive (.a). The

apxs tool automatically recognizes these extensions and automatically used the C source files for

compilation while just using the object and archive files for the linking phase. But when using such

pre-compiled objects make sure they are compiled for position independent code (PIC) to be able to

use them for a dynamically loaded shared object. For instance with GCC you always just have to use

-fpic. For other C compilers consult its manual page or at watch for the flags apxs uses to compile the

object files.

For more details about DSO support in Apache read the documentation of mod_so or perhaps even

read the src/modules/standard/mod_so.c source file.

OPTIONS
Common Options

-n modname

This explicitly sets the module name for the -i (install) and -g (template generation) option. Use

this to explicitly specify the module name. For option -g this is required, for option -i the apxs tool

tries to determine the name from the source or (as a fallback) at least by guessing it from the

filename.

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

Query Options
-q Performs a query for variables and environment settings used to build httpd. When invoked

without query parameters, it prints all known variables and their values. The optional -v parameter

formats the list output. .PP Use this to manually determine settings used to build the httpd that will

load your module. For instance use INC=-I‘apxs -q INCLUDEDIR‘ .PP inside your own Makefiles

if you need manual access to Apache’s C header files.

Configuration Options
-S name=value

This option changes the apxs settings described above.

Template Generation Options
-g This generates a subdirectory name (see option -n) and there two files: A sample module source

file named mod_name.c which can be used as a template for creating your own modules or as a

quick start for playing with the apxs mechanism. And a corresponding Makefile for even easier

build and installing of this module.

DSO Compilation Options
-c This indicates the compilation operation. It first compiles the C source files (.c) of files into

corresponding object files (.o) and then builds a dynamically shared object in dsofile by linking

these object files plus the remaining object files (.o and .a) of files. If no -o option is specified the

output file is guessed from the first filename in files and thus usually defaults to mod_name.so.

-o dsofile

Explicitly specifies the filename of the created dynamically shared object. If not specified and the

name cannot be guessed from the files list, the fallback name mod_unknown.so is used.

-D name=value

This option is directly passed through to the compilation command(s). Use this to add your own

defines to the build process.

-I incdir

This option is directly passed through to the compilation command(s). Use this to add your own

include directories to search to the build process.

-L libdir

This option is directly passed through to the linker command. Use this to add your own library

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

directories to search to the build process.

-l libname

This option is directly passed through to the linker command. Use this to add your own libraries to

search to the build process.

-Wc,compiler-flags

This option passes compiler-flags as additional flags to the libtool --mode=compile command. Use

this to add local compiler-specific options.

-Wl,linker-flags

This option passes linker-flags as additional flags to the libtool --mode=link command. Use this to

add local linker-specific options.

-p This option causes apxs to link against the apr/apr-util libraries. This is useful when compiling

helper programs that use the apr/apr-util libraries.

DSO Installation and Configuration Options
-i This indicates the installation operation and installs one or more dynamically shared objects into

the server’s modules directory.

-a This activates the module by automatically adding a corresponding LoadModule line to Apache’s

httpd.conf configuration file, or by enabling it if it already exists.

-A Same as option -a but the created LoadModule directive is prefixed with a hash sign (#), i.e., the

module is just prepared for later activation but initially disabled.

-e This indicates the editing operation, which can be used with the -a and -A options similarly to the

-i operation to edit Apache’s httpd.conf configuration file without attempting to install the module.

EXAMPLES
Assume you have an Apache module named mod_foo.c available which should extend Apache’s server

functionality. To accomplish this you first have to compile the C source into a shared object suitable

for loading into the Apache server under runtime via the following command:

$ apxs -c mod_foo.c

/path/to/libtool --mode=compile gcc ... -c mod_foo.c

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

/path/to/libtool --mode=link gcc ... -o mod_foo.la mod_foo.slo

$ _

Then you have to update the Apache configuration by making sure a LoadModule directive is present

to load this shared object. To simplify this step apxs provides an automatic way to install the shared

object in its "modules" directory and updating the httpd.conf file accordingly. This can be achieved by

running:

$ apxs -i -a mod_foo.la

/path/to/instdso.sh mod_foo.la /path/to/apache/modules

/path/to/libtool --mode=install cp mod_foo.la /path/to/apache/modules

...

chmod 755 /path/to/apache/modules/mod_foo.so

[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]

$ _

This way a line named

LoadModule foo_module modules/mod_foo.so

is added to the configuration file if still not present. If you want to have this disabled per default use the

-A option, i.e.

$ apxs -i -A mod_foo.c

For a quick test of the apxs mechanism you can create a sample Apache module template plus a

corresponding Makefile via:

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

$ apxs -g -n foo

Creating [DIR] foo

Creating [FILE] foo/Makefile

Creating [FILE] foo/modules.mk

Creating [FILE] foo/mod_foo.c

Creating [FILE] foo/.deps

$ _

Then you can immediately compile this sample module into a shared object and load it into the Apache

server:

$ cd foo

$ make all reload

apxs -c mod_foo.c

/path/to/libtool --mode=compile gcc ... -c mod_foo.c

/path/to/libtool --mode=link gcc ... -o mod_foo.la mod_foo.slo

apxs -i -a -n "foo" mod_foo.la

/path/to/instdso.sh mod_foo.la /path/to/apache/modules

/path/to/libtool --mode=install cp mod_foo.la /path/to/apache/modules

...

chmod 755 /path/to/apache/modules/mod_foo.so

[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]

apachectl restart

/path/to/apache/sbin/apachectl restart: httpd not running, trying to start

[Tue Mar 31 11:27:55 1998] [debug] mod_so.c(303): loaded module foo_module

/path/to/apache/sbin/apachectl restart: httpd started

$ _

APXS(1) apxs APXS(1)

Apache HTTP Server 2018-07-06 APXS(1)

