
NAME
getmntopts, getmntpoint, chkdoreload, build_iovec, build_iovec_argf, free_iovec, checkpath, rmslashes
- mount point operations

SYNOPSIS
#include <mntopts.h>

void

getmntopts(const char *options, const struct mntopt *mopts, int *flagp, int *altflagp);

struct statfs *

getmntpoint(const char *name);

int

chkdoreload(struct statfs *mntp, void (*prtmsg)(const char *fmt, ...));

void

build_iovec(struct iovec **iov, int *iovlen, const char *name, void *val, size_t len);

void

build_iovec_argf(struct iovec **iov, int *iovlen, const char *name, const char *fmt, ...);

void

free_iovec(struct iovec **iov, int *iovlen);

int

checkpath(const char *path, char *resolved);

void

rmslashes(char *rrpin, char *rrpout);

DESCRIPTION
The mntopts functions support operations associated with a mount point. For historic reasons are in a

file in the sources for the mount(8) program. Thus, to access them the following lines need to be added

to the Makefile of the program wanting to use them:

SRCS+= getmntopts.c

MOUNT= ${SRCTOP}/sbin/mount

CFLAGS+= -I${MOUNT}

.PATH: ${MOUNT}

MNTOPTS(3) FreeBSD Library Functions Manual MNTOPTS(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2023 FreeBSD 14.0-RELEASE-p11

The getmntopts() function takes a comma separated option list and a list of valid option names, and

computes the bitmask corresponding to the requested set of options.

The string options is broken down into a sequence of comma separated tokens. Each token is looked up

in the table described by mopts and the bits in the word referenced by either flagp or altflagp (depending

on the m_altloc field of the option’s table entry) are updated. The flag words are not initialized by

getmntopts(). The table, mopts, has the following format:

struct mntopt {

char *m_option; /* option name */

int m_inverse; /* is this a negative option, e.g., "dev" */

int m_flag; /* bit to set, e.g., MNT_RDONLY */

int m_altloc; /* non-zero to use altflagp rather than flagp */

};

The members of this structure are:

m_option the option name, for example "suid".

m_inverse tells getmntopts() that the name has the inverse meaning of the bit. For example, "suid" is

the string, whereas the mount flag is MNT_NOSUID. In this case, the sense of the string

and the flag are inverted, so the m_inverse flag should be set.

m_flag the value of the bit to be set or cleared in the flag word when the option is recognized. The

bit is set when the option is discovered, but cleared if the option name was preceded by the

letters "no". The m_inverse flag causes these two operations to be reversed.

m_altloc the bit should be set or cleared in altflagp rather than flagp.

Each of the user visible MNT_ flags has a corresponding MOPT_ macro which defines an appropriate

struct mntopt entry. To simplify the program interface and ensure consistency across all programs, a

general purpose macro, MOPT_STDOPTS, is defined which contains an entry for all the generic VFS

options. In addition, the macros MOPT_FORCE and MOPT_UPDATE exist to enable the

MNT_FORCE and MNT_UPDATE flags to be set. Finally, the table must be terminated by an entry

with a NULL first element.

The getmntpoint() function takes the pathname of a possible mount point or of a device (with or without

/dev/ prepended to it). If the pathname is a directory or a file, getmntpoint() checks to see if the mount

point currently has a filesystem mounted on it. If the pathname is a device, getmntpoint() checks to see

if it is currently mounted. If there is an associated mount, a pointer to a struct statfs is returned. The

MNTOPTS(3) FreeBSD Library Functions Manual MNTOPTS(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2023 FreeBSD 14.0-RELEASE-p11

returned result is stored in a static buffer that is over-written each time the getmntpoint() function or the

getmntinfo(3) library routine is called. If no mount is found, NULL is returned.

The chkdoreload() function takes a pointer to a struct statfs. If the filesystem associated with the mount

point is mounted read-only, chkdoreload() requests the filesystem to reload all of its metadata from its

backing store. The second parameter is the function to call to print an error message if the reload fails.

If no error message is desired, a NULL can be passed as the second argument. The chkdoreload()

function returns zero on success or non-zero on failure.

The build_iovec() function adds a parameter to a list of parameters to be passed to the nmount(2) system

call. The parameter list is built up in iov and its length is kept in iovlen. Before the first call to

build_iovec(), iov should be set to NULL and iovlen should be set to 0. The parameter name is passed

in name. The value of the parameter name is pointed to by val. The size of the value is passed in len. If

the value is a string, a len of -1 is passed to indicate that the length should be determined using strlen(3).

If the parameter has no value, name should be NULL and len should be 0.

The build_iovec_argf() function adds a formatted parameter to a list of parameters to be passed to the

nmount(2) system call. The parameter list is built up in iov and its length is kept in iovlen. Before the

first call to build_iovec_argf(), iov should be set to NULL and iovlen should be set to 0. The parameter

name is passed in name. The value of the parameter name is described by a format string pointed to by

fmt. If the parameter has no value, name should be NULL.

The free_iovec() function frees the memory in the iov vector of the length specified in iovlen that was

previously allocated by the build_iovec() and / or build_iovec_argf() functions. The iov is set to NULL

and the iovlen is set to 0 to indicate that the space has been freed.

The checkpath() function uses realpath(3) to verify that its path argument is valid and references a

directory. The checkpath() function returns zero on success or non-zero on failure.

The rmslashes() function removes all double slashes and trailing slashes from its rrpin pathname

parameter and returns the resulting pathname in its rrpout parameter.

EXAMPLES
Most commands will use the standard option set. Local file systems which support the MNT_UPDATE

flag, would also have an MOPT_UPDATE entry. This can be declared and used as follows:

#include "mntopts.h"

struct mntopt mopts[] = {

MOPT_STDOPTS,

MNTOPTS(3) FreeBSD Library Functions Manual MNTOPTS(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2023 FreeBSD 14.0-RELEASE-p11

MOPT_UPDATE,

{ NULL }

};

...

mntflags = mntaltflags = 0;

...

getmntopts(options, mopts, &mntflags, &mntaltflags);

...

DIAGNOSTICS
If the external integer variable getmnt_silent is zero, then the getmntopts() function displays an error

message and exits if an unrecognized option is encountered. Otherwise unrecognized options are

silently ignored. By default getmnt_silent is zero.

SEE ALSO
err(3), mount(8), nmount(8)

HISTORY
The getmntopts() function appeared in 4.4BSD. The build_iovec(), build_iovec_argf(), free_iovec(),

checkpath(), and rmslashes() functions were added with nmount(8) in FreeBSD 5.0. The getmntpoint()
and chkdoreload() functions were added in FreeBSD 14.0.

MNTOPTS(3) FreeBSD Library Functions Manual MNTOPTS(3)

FreeBSD 14.0-RELEASE-p11 January 19, 2023 FreeBSD 14.0-RELEASE-p11

