
NAME
curl_multi_wait - polls on all easy handles in a multi handle

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_wait(CURLM *multi_handle,

struct curl_waitfd extra_fds[],

unsigned int extra_nfds,

int timeout_ms,

int *numfds);

DESCRIPTION
curl_multi_wait(3) polls all file descriptors used by the curl easy handles contained in the given multi

handle set. It blocks until activity is detected on at least one of the handles or timeout_ms has passed.

Alternatively, if the multi handle has a pending internal timeout that has a shorter expiry time than

timeout_ms, that shorter time is be used instead to make sure timeout accuracy is reasonably kept.

The calling application may pass additional curl_waitfd structures which are similar to poll(2)’s pollfd

structure to be waited on in the same call.

On completion, if numfds is non-NULL, it gets populated with the total number of file descriptors on

which interesting events occurred. This number can include both libcurl internal descriptors as well as

descriptors provided in extra_fds.

If no extra file descriptors are provided and libcurl has no file descriptor to offer to wait for, this

function returns immediately. (Consider using curl_multi_poll(3) to avoid this behavior.)

This function is encouraged to be used instead of select(3) when using the multi interface to allow

applications to easier circumvent the common problem with 1024 maximum file descriptors.

curl_waitfd
struct curl_waitfd {

curl_socket_t fd;

short events;

short revents;

};

CURL_WAIT_POLLIN

Bit flag to curl_waitfd.events indicating the socket should poll on read events such as new data

curl_multi_wait(3) libcurl curl_multi_wait(3)

libcurl 8.5.0 December 4, 2023 curl_multi_wait(3)



received.

CURL_WAIT_POLLPRI

Bit flag to curl_waitfd.events indicating the socket should poll on high priority read events such as

out of band data.

CURL_WAIT_POLLOUT

Bit flag to curl_waitfd.events indicating the socket should poll on write events such as the socket

being clear to write without blocking.

EXAMPLE
int main(void)

{

CURL *easy;

CURLM *multi = curl_multi_init();

int still_running;

/* add the individual easy handle */

curl_multi_add_handle(multi, easy);

do {

CURLMcode mc;

int numfds;

mc = curl_multi_perform(multi, &still_running);

if(mc == CURLM_OK) {

/* wait for activity, timeout or "nothing" */

mc = curl_multi_wait(multi, NULL, 0, 1000, &numfds);

}

if(mc != CURLM_OK) {

fprintf(stderr, "curl_multi failed, code %d.\n", mc);

break;

}

} while(still_running);

curl_multi_remove_handle(multi, easy);

}

curl_multi_wait(3) libcurl curl_multi_wait(3)

libcurl 8.5.0 December 4, 2023 curl_multi_wait(3)



AVAILABILITY
This function was added in libcurl 7.28.0.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code. See libcurl-errors(3)

SEE ALSO
curl_multi_fdset(3), curl_multi_perform(3), curl_multi_poll(3)

curl_multi_wait(3) libcurl curl_multi_wait(3)

libcurl 8.5.0 December 4, 2023 curl_multi_wait(3)


