
Name
dc - arbitrary-precision decimal reverse-Polish notation calculator

SYNOPSIS
dc [-cChiPRvVx] [--version] [--help] [--digit-clamp] [--no-digit-clamp] [--interactive] [--no-prompt]
[--no-read-prompt] [--extended-register] [-e expr] [--expression=expr...] [-f file...] [--file=file...] [file...]

[-I ibase] [--ibase=ibase] [-O obase] [--obase=obase] [-S scale] [--scale=scale] [-E seed] [--seed=seed]

DESCRIPTION
dc(1) is an arbitrary-precision calculator. It uses a stack (reverse Polish notation) to store numbers and

results of computations. Arithmetic operations pop arguments off of the stack and push the results.

If no files are given on the command-line, then dc(1) reads from stdin (see the STDIN section).

Otherwise, those files are processed, and dc(1) will then exit.

If a user wants to set up a standard environment, they can use DC_ENV_ARGS (see the

ENVIRONMENT VARIABLES section). For example, if a user wants the scale always set to 10, they

can set DC_ENV_ARGS to -e 10k, and this dc(1) will always start with a scale of 10.

OPTIONS
The following are the options that dc(1) accepts.

-C, --no-digit-clamp
Disables clamping of digits greater than or equal to the current ibase when parsing numbers.

This means that the value added to a number from a digit is always that digit’s value multiplied by

the value of ibase raised to the power of the digit’s position, which starts from 0 at the least

significant digit.

If this and/or the -c or --digit-clamp options are given multiple times, the last one given is used.

This option overrides the DC_DIGIT_CLAMP environment variable (see the ENVIRONMENT
VARIABLES section) and the default, which can be queried with the -h or --help options.

This is a non-portable extension.

-c, --digit-clamp
Enables clamping of digits greater than or equal to the current ibase when parsing numbers.

This means that digits that the value added to a number from a digit that is greater than or equal to

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

the ibase is the value of ibase minus 1 all multiplied by the value of ibase raised to the power of the

digit’s position, which starts from 0 at the least significant digit.

If this and/or the -C or --no-digit-clamp options are given multiple times, the last one given is used.

This option overrides the DC_DIGIT_CLAMP environment variable (see the ENVIRONMENT
VARIABLES section) and the default, which can be queried with the -h or --help options.

This is a non-portable extension.

-E seed, --seed=seed

Sets the builtin variable seed to the value seed assuming that seed is in base 10. It is a fatal error if

seed is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-e expr, --expression=expr

Evaluates expr. If multiple expressions are given, they are evaluated in order. If files are given as

well (see below), the expressions and files are evaluated in the order given. This means that if a

file is given before an expression, the file is read in and evaluated first.

If this option is given on the command-line (i.e., not in DC_ENV_ARGS, see the

ENVIRONMENT VARIABLES section), then after processing all expressions and files, dc(1) will

exit, unless - (stdin) was given as an argument at least once to -f or --file, whether on the

command-line or in DC_ENV_ARGS. However, if any other -e, --expression, -f, or --file
arguments are given after -f- or equivalent is given, dc(1) will give a fatal error and exit.

This is a non-portable extension.

-f file, --file=file

Reads in file and evaluates it, line by line, as though it were read through stdin. If expressions are

also given (see above), the expressions are evaluated in the order given.

If this option is given on the command-line (i.e., not in DC_ENV_ARGS, see the

ENVIRONMENT VARIABLES section), then after processing all expressions and files, dc(1) will

exit, unless - (stdin) was given as an argument at least once to -f or --file. However, if any other

-e, --expression, -f, or --file arguments are given after -f- or equivalent is given, dc(1) will give a

fatal error and exit.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

This is a non-portable extension.

-h, --help
Prints a usage message and exits.

-I ibase, --ibase=ibase

Sets the builtin variable ibase to the value ibase assuming that ibase is in base 10. It is a fatal error

if ibase is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-i, --interactive
Forces interactive mode. (See the INTERACTIVE MODE section.)

This is a non-portable extension.

-L, --no-line-length
Disables line length checking and prints numbers without backslashes and newlines. In other

words, this option sets BC_LINE_LENGTH to 0 (see the ENVIRONMENT VARIABLES
section).

This is a non-portable extension.

-O obase, --obase=obase

Sets the builtin variable obase to the value obase assuming that obase is in base 10. It is a fatal

error if obase is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-P, --no-prompt
Disables the prompt in TTY mode. (The prompt is only enabled in TTY mode. See the TTY
MODE section.) This is mostly for those users that do not want a prompt or are not used to having

them in dc(1). Most of those users would want to put this option in DC_ENV_ARGS.

These options override the DC_PROMPT and DC_TTY_MODE environment variables (see the

ENVIRONMENT VARIABLES section).

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

This is a non-portable extension.

-R, --no-read-prompt
Disables the read prompt in TTY mode. (The read prompt is only enabled in TTY mode. See the

TTY MODE section.) This is mostly for those users that do not want a read prompt or are not used

to having them in dc(1). Most of those users would want to put this option in BC_ENV_ARGS
(see the ENVIRONMENT VARIABLES section). This option is also useful in hash bang lines of

dc(1) scripts that prompt for user input.

This option does not disable the regular prompt because the read prompt is only used when the ?
command is used.

These options do override the DC_PROMPT and DC_TTY_MODE environment variables (see the

ENVIRONMENT VARIABLES section), but only for the read prompt.

This is a non-portable extension.

-S scale, --scale=scale

Sets the builtin variable scale to the value scale assuming that scale is in base 10. It is a fatal error

if scale is not a valid number.

If multiple instances of this option are given, the last is used.

This is a non-portable extension.

-v, -V, --version
Print the version information (copyright header) and exits.

-x --extended-register
Enables extended register mode. See the Extended Register Mode subsection of the REGISTERS
section for more information.

This is a non-portable extension.

-z, --leading-zeroes
Makes dc(1) print all numbers greater than -1 and less than 1, and not equal to 0, with a leading

zero.

This is a non-portable extension.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

All long options are non-portable extensions.

STDIN
If no files are given on the command-line and no files or expressions are given by the -f, --file, -e, or

--expression options, then dc(1) reads from stdin.

However, there is a caveat to this.

First, stdin is evaluated a line at a time. The only exception to this is if a string has been finished, but

not ended. This means that, except for escaped brackets, all brackets must be balanced before dc(1)

parses and executes.

STDOUT
Any non-error output is written to stdout. In addition, if history (see the HISTORY section) and the

prompt (see the TTY MODE section) are enabled, both are output to stdout.

Note: Unlike other dc(1) implementations, this dc(1) will issue a fatal error (see the EXIT STATUS
section) if it cannot write to stdout, so if stdout is closed, as in dc >&-, it will quit with an error. This is

done so that dc(1) can report problems when stdout is redirected to a file.

If there are scripts that depend on the behavior of other dc(1) implementations, it is recommended that

those scripts be changed to redirect stdout to /dev/null.

STDERR
Any error output is written to stderr.

Note: Unlike other dc(1) implementations, this dc(1) will issue a fatal error (see the EXIT STATUS
section) if it cannot write to stderr, so if stderr is closed, as in dc 2>&-, it will quit with an error. This

is done so that dc(1) can exit with an error code when stderr is redirected to a file.

If there are scripts that depend on the behavior of other dc(1) implementations, it is recommended that

those scripts be changed to redirect stderr to /dev/null.

SYNTAX
Each item in the input source code, either a number (see the NUMBERS section) or a command (see

the COMMANDS section), is processed and executed, in order. Input is processed immediately when

entered.

ibase is a register (see the REGISTERS section) that determines how to interpret constant numbers. It

is the "input" base, or the number base used for interpreting input numbers. ibase is initially 10. The

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

max allowable value for ibase is 16. The min allowable value for ibase is 2. The max allowable value

for ibase can be queried in dc(1) programs with the T command.

obase is a register (see the REGISTERS section) that determines how to output results. It is the

"output" base, or the number base used for outputting numbers. obase is initially 10. The max

allowable value for obase is DC_BASE_MAX and can be queried with the U command. The min

allowable value for obase is 0. If obase is 0, values are output in scientific notation, and if obase is 1,

values are output in engineering notation. Otherwise, values are output in the specified base.

Outputting in scientific and engineering notations are non-portable extensions.

The scale of an expression is the number of digits in the result of the expression right of the decimal

point, and scale is a register (see the REGISTERS section) that sets the precision of any operations

(with exceptions). scale is initially 0. scale cannot be negative. The max allowable value for scale can

be queried in dc(1) programs with the V command.

seed is a register containing the current seed for the pseudo-random number generator. If the current

value of seed is queried and stored, then if it is assigned to seed later, the pseudo-random number

generator is guaranteed to produce the same sequence of pseudo-random numbers that were generated

after the value of seed was first queried.

Multiple values assigned to seed can produce the same sequence of pseudo-random numbers.

Likewise, when a value is assigned to seed, it is not guaranteed that querying seed immediately after

will return the same value. In addition, the value of seed will change after any call to the ’ command or

the " command that does not get receive a value of 0 or 1. The maximum integer returned by the ’
command can be queried with the W command.

Note: The values returned by the pseudo-random number generator with the ’ and " commands are

guaranteed to NOT be cryptographically secure. This is a consequence of using a seeded pseudo-

random number generator. However, they are guaranteed to be reproducible with identical seed values.

This means that the pseudo-random values from dc(1) should only be used where a reproducible stream

of pseudo-random numbers is ESSENTIAL. In any other case, use a non-seeded pseudo-random

number generator.

The pseudo-random number generator, seed, and all associated operations are non-portable extensions.

Comments
Comments go from # until, and not including, the next newline. This is a non-portable extension.

NUMBERS

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

Numbers are strings made up of digits, uppercase letters up to F, and at most 1 period for a radix.

Numbers can have up to DC_NUM_MAX digits. Uppercase letters are equal to 9 plus their position in

the alphabet (i.e., A equals 10, or 9+1).

If a digit or letter makes no sense with the current value of ibase (i.e., they are greater than or equal to

the current value of ibase), then the behavior depends on the existence of the -c/--digit-clamp or

-C/--no-digit-clamp options (see the OPTIONS section), the existence and setting of the

DC_DIGIT_CLAMP environment variable (see the ENVIRONMENT VARIABLES section), or the

default, which can be queried with the -h/--help option.

If clamping is off, then digits or letters that are greater than or equal to the current value of ibase are

not changed. Instead, their given value is multiplied by the appropriate power of ibase and added into

the number. This means that, with an ibase of 3, the number AB is equal to 3^1*A+3^0*B, which is 3
times 10 plus 11, or 41.

If clamping is on, then digits or letters that are greater than or equal to the current value of ibase are set

to the value of the highest valid digit in ibase before being multiplied by the appropriate power of ibase
and added into the number. This means that, with an ibase of 3, the number AB is equal to

3^1*2+3^0*2, which is 3 times 2 plus 2, or 8.

There is one exception to clamping: single-character numbers (i.e., A alone). Such numbers are never

clamped and always take the value they would have in the highest possible ibase. This means that A
alone always equals decimal 10 and Z alone always equals decimal 35. This behavior is mandated by

the standard for bc(1) (see the STANDARDS section) and is meant to provide an easy way to set the

current ibase (with the i command) regardless of the current value of ibase.

If clamping is on, and the clamped value of a character is needed, use a leading zero, i.e., for A, use

0A.

In addition, dc(1) accepts numbers in scientific notation. These have the form <number>e<integer>.

The exponent (the portion after the e) must be an integer. An example is 1.89237e9, which is equal to

1892370000. Negative exponents are also allowed, so 4.2890e_3 is equal to 0.0042890.

WARNING: Both the number and the exponent in scientific notation are interpreted according to the

current ibase, but the number is still multiplied by 10^exponent regardless of the current ibase. For

example, if ibase is 16 and dc(1) is given the number string FFeA, the resulting decimal number will be

2550000000000, and if dc(1) is given the number string 10e_4, the resulting decimal number will be

0.0016.

Accepting input as scientific notation is a non-portable extension.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

COMMANDS
The valid commands are listed below.

Printing
These commands are used for printing.

Note that both scientific notation and engineering notation are available for printing numbers.

Scientific notation is activated by assigning 0 to obase using 0o, and engineering notation is activated

by assigning 1 to obase using 1o. To deactivate them, just assign a different value to obase.

Printing numbers in scientific notation and/or engineering notation is a non-portable extension.

p Prints the value on top of the stack, whether number or string, and prints a newline after.

This does not alter the stack.

n Prints the value on top of the stack, whether number or string, and pops it off of the stack.

P Pops a value off the stack.

If the value is a number, it is truncated and the absolute value of the result is printed as though

obase is 256 and each digit is interpreted as an 8-bit ASCII character, making it a byte stream.

If the value is a string, it is printed without a trailing newline.

This is a non-portable extension.

f Prints the entire contents of the stack, in order from newest to oldest, without altering anything.

Users should use this command when they get lost.

Arithmetic
These are the commands used for arithmetic.

+ The top two values are popped off the stack, added, and the result is pushed onto the stack. The

scale of the result is equal to the max scale of both operands.

- The top two values are popped off the stack, subtracted, and the result is pushed onto the stack.

The scale of the result is equal to the max scale of both operands.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

* The top two values are popped off the stack, multiplied, and the result is pushed onto the stack. If

a is the scale of the first expression and b is the scale of the second expression, the scale of the

result is equal to min(a+b,max(scale,a,b)) where min() and max() return the obvious values.

/ The top two values are popped off the stack, divided, and the result is pushed onto the stack. The

scale of the result is equal to scale.

The first value popped off of the stack must be non-zero.

% The top two values are popped off the stack, remaindered, and the result is pushed onto the stack.

Remaindering is equivalent to 1) Computing a/b to current scale, and 2) Using the result of step 1

to calculate a-(a/b)*b to scale max(scale+scale(b),scale(a)).

The first value popped off of the stack must be non-zero.

~ The top two values are popped off the stack, divided and remaindered, and the results (divided

first, remainder second) are pushed onto the stack. This is equivalent to x y / x y % except that x
and y are only evaluated once.

The first value popped off of the stack must be non-zero.

This is a non-portable extension.

^ The top two values are popped off the stack, the second is raised to the power of the first, and the

result is pushed onto the stack. The scale of the result is equal to scale.

The first value popped off of the stack must be an integer, and if that value is negative, the second

value popped off of the stack must be non-zero.

v The top value is popped off the stack, its square root is computed, and the result is pushed onto the

stack. The scale of the result is equal to scale.

The value popped off of the stack must be non-negative.

_ If this command immediately precedes a number (i.e., no spaces or other commands), then that

number is input as a negative number.

Otherwise, the top value on the stack is popped and copied, and the copy is negated and pushed

onto the stack. This behavior without a number is a non-portable extension.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

b The top value is popped off the stack, and if it is zero, it is pushed back onto the stack. Otherwise,

its absolute value is pushed onto the stack.

This is a non-portable extension.

| The top three values are popped off the stack, a modular exponentiation is computed, and the result

is pushed onto the stack.

The first value popped is used as the reduction modulus and must be an integer and non-zero. The

second value popped is used as the exponent and must be an integer and non-negative. The third

value popped is the base and must be an integer.

This is a non-portable extension.

$ The top value is popped off the stack and copied, and the copy is truncated and pushed onto the

stack.

This is a non-portable extension.

@ The top two values are popped off the stack, and the precision of the second is set to the value of

the first, whether by truncation or extension.

The first value popped off of the stack must be an integer and non-negative.

This is a non-portable extension.

H The top two values are popped off the stack, and the second is shifted left (radix shifted right) to

the value of the first.

The first value popped off of the stack must be an integer and non-negative.

This is a non-portable extension.

h The top two values are popped off the stack, and the second is shifted right (radix shifted left) to

the value of the first.

The first value popped off of the stack must be an integer and non-negative.

This is a non-portable extension.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

G The top two values are popped off of the stack, they are compared, and a 1 is pushed if they are

equal, or 0 otherwise.

This is a non-portable extension.

N The top value is popped off of the stack, and if it a 0, a 1 is pushed; otherwise, a 0 is pushed.

This is a non-portable extension.

(The top two values are popped off of the stack, they are compared, and a 1 is pushed if the first is

less than the second, or 0 otherwise.

This is a non-portable extension.

{ The top two values are popped off of the stack, they are compared, and a 1 is pushed if the first is

less than or equal to the second, or 0 otherwise.

This is a non-portable extension.

) The top two values are popped off of the stack, they are compared, and a 1 is pushed if the first is

greater than the second, or 0 otherwise.

This is a non-portable extension.

} The top two values are popped off of the stack, they are compared, and a 1 is pushed if the first is

greater than or equal to the second, or 0 otherwise.

This is a non-portable extension.

M The top two values are popped off of the stack. If they are both non-zero, a 1 is pushed onto the

stack. If either of them is zero, or both of them are, then a 0 is pushed onto the stack.

This is like the && operator in bc(1), and it is not a short-circuit operator.

This is a non-portable extension.

m The top two values are popped off of the stack. If at least one of them is non-zero, a 1 is pushed

onto the stack. If both of them are zero, then a 0 is pushed onto the stack.

This is like the || operator in bc(1), and it is not a short-circuit operator.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

This is a non-portable extension.

Pseudo-Random Number Generator
dc(1) has a built-in pseudo-random number generator. These commands query the pseudo-random

number generator. (See Parameters for more information about the seed value that controls the pseudo-

random number generator.)

The pseudo-random number generator is guaranteed to NOT be cryptographically secure.

’ Generates an integer between 0 and DC_RAND_MAX, inclusive (see the LIMITS section).

The generated integer is made as unbiased as possible, subject to the limitations of the pseudo-

random number generator.

This is a non-portable extension.

" Pops a value off of the stack, which is used as an exclusive upper bound on the integer that will be

generated. If the bound is negative or is a non-integer, an error is raised, and dc(1) resets (see the

RESET section) while seed remains unchanged. If the bound is larger than DC_RAND_MAX, the

higher bound is honored by generating several pseudo-random integers, multiplying them by

appropriate powers of DC_RAND_MAX+1, and adding them together. Thus, the size of integer

that can be generated with this command is unbounded. Using this command will change the

value of seed, unless the operand is 0 or 1. In that case, 0 is pushed onto the stack, and seed is not

changed.

The generated integer is made as unbiased as possible, subject to the limitations of the pseudo-

random number generator.

This is a non-portable extension.

Stack Control
These commands control the stack.

c Removes all items from ("clears") the stack.

d Copies the item on top of the stack ("duplicates") and pushes the copy onto the stack.

r Swaps ("reverses") the two top items on the stack.

R Pops ("removes") the top value from the stack.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

Register Control
These commands control registers (see the REGISTERS section).

sr Pops the value off the top of the stack and stores it into register r.

lr Copies the value in register r and pushes it onto the stack. This does not alter the contents of r.

Sr Pops the value off the top of the (main) stack and pushes it onto the stack of register r. The

previous value of the register becomes inaccessible.

Lr Pops the value off the top of the stack for register r and push it onto the main stack. The previous

value in the stack for register r, if any, is now accessible via the lr command.

Parameters
These commands control the values of ibase, obase, scale, and seed. Also see the SYNTAX section.

i Pops the value off of the top of the stack and uses it to set ibase, which must be between 2 and 16,

inclusive.

If the value on top of the stack has any scale, the scale is ignored.

o Pops the value off of the top of the stack and uses it to set obase, which must be between 0 and

DC_BASE_MAX, inclusive (see the LIMITS section and the NUMBERS section).

If the value on top of the stack has any scale, the scale is ignored.

k Pops the value off of the top of the stack and uses it to set scale, which must be non-negative.

If the value on top of the stack has any scale, the scale is ignored.

j Pops the value off of the top of the stack and uses it to set seed. The meaning of seed is dependent

on the current pseudo-random number generator but is guaranteed to not change except for new

major versions.

The scale and sign of the value may be significant.

If a previously used seed value is used again, the pseudo-random number generator is guaranteed

to produce the same sequence of pseudo-random numbers as it did when the seed value was

previously used.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

The exact value assigned to seed is not guaranteed to be returned if the J command is used.

However, if seed does return a different value, both values, when assigned to seed, are guaranteed

to produce the same sequence of pseudo-random numbers. This means that certain values assigned

to seed will not produce unique sequences of pseudo-random numbers.

There is no limit to the length (number of significant decimal digits) or scale of the value that can

be assigned to seed.

This is a non-portable extension.

I Pushes the current value of ibase onto the main stack.

O Pushes the current value of obase onto the main stack.

K Pushes the current value of scale onto the main stack.

J Pushes the current value of seed onto the main stack.

This is a non-portable extension.

T Pushes the maximum allowable value of ibase onto the main stack.

This is a non-portable extension.

U Pushes the maximum allowable value of obase onto the main stack.

This is a non-portable extension.

V Pushes the maximum allowable value of scale onto the main stack.

This is a non-portable extension.

W Pushes the maximum (inclusive) integer that can be generated with the ’ pseudo-random number

generator command.

This is a non-portable extension.

Strings
The following commands control strings.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

dc(1) can work with both numbers and strings, and registers (see the REGISTERS section) can hold

both strings and numbers. dc(1) always knows whether the contents of a register are a string or a

number.

While arithmetic operations have to have numbers, and will print an error if given a string, other

commands accept strings.

Strings can also be executed as macros. For example, if the string [1pR] is executed as a macro, then

the code 1pR is executed, meaning that the 1 will be printed with a newline after and then popped from

the stack.

[characters]
Makes a string containing characters and pushes it onto the stack.

If there are brackets ([and]) in the string, then they must be balanced. Unbalanced brackets can

be escaped using a backslash (\) character.

If there is a backslash character in the string, the character after it (even another backslash) is put

into the string verbatim, but the (first) backslash is not.

a The value on top of the stack is popped.

If it is a number, it is truncated and its absolute value is taken. The result mod 256 is calculated. If

that result is 0, push an empty string; otherwise, push a one-character string where the character is

the result of the mod interpreted as an ASCII character.

If it is a string, then a new string is made. If the original string is empty, the new string is empty.

If it is not, then the first character of the original string is used to create the new string as a one-

character string. The new string is then pushed onto the stack.

This is a non-portable extension.

x Pops a value off of the top of the stack.

If it is a number, it is pushed back onto the stack.

If it is a string, it is executed as a macro.

This behavior is the norm whenever a macro is executed, whether by this command or by the

conditional execution commands below.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

>r Pops two values off of the stack that must be numbers and compares them. If the first value is

greater than the second, then the contents of register r are executed.

For example, 0 1>a will execute the contents of register a, and 1 0>a will not.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

>res

Like the above, but will execute register s if the comparison fails.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

This is a non-portable extension.

!>r Pops two values off of the stack that must be numbers and compares them. If the first value is not

greater than the second (less than or equal to), then the contents of register r are executed.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

!>res

Like the above, but will execute register s if the comparison fails.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

This is a non-portable extension.

<r Pops two values off of the stack that must be numbers and compares them. If the first value is less

than the second, then the contents of register r are executed.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

<res

Like the above, but will execute register s if the comparison fails.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

section).

This is a non-portable extension.

!<r Pops two values off of the stack that must be numbers and compares them. If the first value is not

less than the second (greater than or equal to), then the contents of register r are executed.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

!<res

Like the above, but will execute register s if the comparison fails.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

This is a non-portable extension.

=r Pops two values off of the stack that must be numbers and compares them. If the first value is

equal to the second, then the contents of register r are executed.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

=res

Like the above, but will execute register s if the comparison fails.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

This is a non-portable extension.

!=r Pops two values off of the stack that must be numbers and compares them. If the first value is not

equal to the second, then the contents of register r are executed.

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

!=res

Like the above, but will execute register s if the comparison fails.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

If either or both of the values are not numbers, dc(1) will raise an error and reset (see the RESET
section).

This is a non-portable extension.

? Reads a line from the stdin and executes it. This is to allow macros to request input from users.

q During execution of a macro, this exits the execution of that macro and the execution of the macro

that executed it. If there are no macros, or only one macro executing, dc(1) exits.

Q Pops a value from the stack which must be non-negative and is used the number of macro

executions to pop off of the execution stack. If the number of levels to pop is greater than the

number of executing macros, dc(1) exits.

, Pushes the depth of the execution stack onto the stack. The execution stack is the stack of string

executions. The number that is pushed onto the stack is exactly as many as is needed to make

dc(1) exit with the Q command, so the sequence ,Q will make dc(1) exit.

This is a non-portable extension.

Status
These commands query status of the stack or its top value.

Z Pops a value off of the stack.

If it is a number, calculates the number of significant decimal digits it has and pushes the result. It

will push 1 if the argument is 0 with no decimal places.

If it is a string, pushes the number of characters the string has.

X Pops a value off of the stack.

If it is a number, pushes the scale of the value onto the stack.

If it is a string, pushes 0.

u Pops one value off of the stack. If the value is a number, this pushes 1 onto the stack. Otherwise

(if it is a string), it pushes 0.

This is a non-portable extension.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

t Pops one value off of the stack. If the value is a string, this pushes 1 onto the stack. Otherwise (if

it is a number), it pushes 0.

This is a non-portable extension.

z Pushes the current depth of the stack (before execution of this command) onto the stack.

yr Pushes the current stack depth of the register r onto the main stack.

Because each register has a depth of 1 (with the value 0 in the top item) when dc(1) starts, dc(1)

requires that each register’s stack must always have at least one item; dc(1) will give an error and

reset otherwise (see the RESET section). This means that this command will never push 0.

This is a non-portable extension.

Arrays
These commands manipulate arrays.

:r Pops the top two values off of the stack. The second value will be stored in the array r (see the

REGISTERS section), indexed by the first value.

;r Pops the value on top of the stack and uses it as an index into the array r. The selected value is

then pushed onto the stack.

Yr Pushes the length of the array r onto the stack.

This is a non-portable extension.

Global Settings
These commands retrieve global settings. These are the only commands that require multiple specific

characters, and all of them begin with the letter g. Only the characters below are allowed after the

character g; any other character produces a parse error (see the ERRORS section).

gl Pushes the line length set by DC_LINE_LENGTH (see the ENVIRONMENT VARIABLES
section) onto the stack.

gx Pushes 1 onto the stack if extended register mode is on, 0 otherwise. See the Extended Register

Mode subsection of the REGISTERS section for more information.

gz Pushes 0 onto the stack if the leading zero setting has not been enabled with the -z or --leading-

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

zeroes options (see the OPTIONS section), non-zero otherwise.

REGISTERS
Registers are names that can store strings, numbers, and arrays. (Number/string registers do not

interfere with array registers.)

Each register is also its own stack, so the current register value is the top of the stack for the register.

All registers, when first referenced, have one value (0) in their stack, and it is a runtime error to attempt

to pop that item off of the register stack.

In non-extended register mode, a register name is just the single character that follows any command

that needs a register name. The only exceptions are: a newline (‘\n’) and a left bracket (‘[’); it is a

parse error for a newline or a left bracket to be used as a register name.

Extended Register Mode
Unlike most other dc(1) implentations, this dc(1) provides nearly unlimited amounts of registers, if

extended register mode is enabled.

If extended register mode is enabled (-x or --extended-register command-line arguments are given),

then normal single character registers are used unless the character immediately following a command

that needs a register name is a space (according to isspace()) and not a newline (‘\n’).

In that case, the register name is found according to the regex [a-z][a-z0-9_]* (like bc(1) identifiers),

and it is a parse error if the next non-space characters do not match that regex.

RESET
When dc(1) encounters an error or a signal that it has a non-default handler for, it resets. This means

that several things happen.

First, any macros that are executing are stopped and popped off the stack. The behavior is not unlike

that of exceptions in programming languages. Then the execution point is set so that any code waiting

to execute (after all macros returned) is skipped.

Thus, when dc(1) resets, it skips any remaining code waiting to be executed. Then, if it is interactive

mode, and the error was not a fatal error (see the EXIT STATUS section), it asks for more input;

otherwise, it exits with the appropriate return code.

PERFORMANCE
Most dc(1) implementations use char types to calculate the value of 1 decimal digit at a time, but that

can be slow. This dc(1) does something different.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

It uses large integers to calculate more than 1 decimal digit at a time. If built in a environment where

DC_LONG_BIT (see the LIMITS section) is 64, then each integer has 9 decimal digits. If built in an

environment where DC_LONG_BIT is 32 then each integer has 4 decimal digits. This value (the

number of decimal digits per large integer) is called DC_BASE_DIGS.

In addition, this dc(1) uses an even larger integer for overflow checking. This integer type depends on

the value of DC_LONG_BIT, but is always at least twice as large as the integer type used to store

digits.

LIMITS
The following are the limits on dc(1):

DC_LONG_BIT
The number of bits in the long type in the environment where dc(1) was built. This determines

how many decimal digits can be stored in a single large integer (see the PERFORMANCE
section).

DC_BASE_DIGS
The number of decimal digits per large integer (see the PERFORMANCE section). Depends on

DC_LONG_BIT.

DC_BASE_POW
The max decimal number that each large integer can store (see DC_BASE_DIGS) plus 1.

Depends on DC_BASE_DIGS.

DC_OVERFLOW_MAX
The max number that the overflow type (see the PERFORMANCE section) can hold. Depends on

DC_LONG_BIT.

DC_BASE_MAX
The maximum output base. Set at DC_BASE_POW.

DC_DIM_MAX
The maximum size of arrays. Set at SIZE_MAX-1.

DC_SCALE_MAX
The maximum scale. Set at DC_OVERFLOW_MAX-1.

DC_STRING_MAX
The maximum length of strings. Set at DC_OVERFLOW_MAX-1.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

DC_NAME_MAX
The maximum length of identifiers. Set at DC_OVERFLOW_MAX-1.

DC_NUM_MAX
The maximum length of a number (in decimal digits), which includes digits after the decimal

point. Set at DC_OVERFLOW_MAX-1.

DC_RAND_MAX
The maximum integer (inclusive) returned by the ’ command, if dc(1). Set at

2^DC_LONG_BIT-1.

Exponent

The maximum allowable exponent (positive or negative). Set at DC_OVERFLOW_MAX.

Number of vars

The maximum number of vars/arrays. Set at SIZE_MAX-1.

These limits are meant to be effectively non-existent; the limits are so large (at least on 64-bit

machines) that there should not be any point at which they become a problem. In fact, memory should

be exhausted before these limits should be hit.

ENVIRONMENT VARIABLES
As non-portable extensions, dc(1) recognizes the following environment variables:

DC_ENV_ARGS
This is another way to give command-line arguments to dc(1). They should be in the same format

as all other command-line arguments. These are always processed first, so any files given in

DC_ENV_ARGS will be processed before arguments and files given on the command-line. This

gives the user the ability to set up "standard" options and files to be used at every invocation. The

most useful thing for such files to contain would be useful functions that the user might want every

time dc(1) runs. Another use would be to use the -e option to set scale to a value other than 0.

The code that parses DC_ENV_ARGS will correctly handle quoted arguments, but it does not

understand escape sequences. For example, the string "/home/gavin/some dc file.dc" will be

correctly parsed, but the string "/home/gavin/some "dc" file.dc" will include the backslashes.

The quote parsing will handle either kind of quotes, ’ or ". Thus, if you have a file with any

number of single quotes in the name, you can use double quotes as the outside quotes, as in "some
‘dc’ file.dc", and vice versa if you have a file with double quotes. However, handling a file with

both kinds of quotes in DC_ENV_ARGS is not supported due to the complexity of the parsing,

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

though such files are still supported on the command-line where the parsing is done by the shell.

DC_LINE_LENGTH
If this environment variable exists and contains an integer that is greater than 1 and is less than

UINT16_MAX (2^16-1), dc(1) will output lines to that length, including the backslash newline

combo. The default line length is 70.

The special value of 0 will disable line length checking and print numbers without regard to line

length and without backslashes and newlines.

DC_SIGINT_RESET
If dc(1) is not in interactive mode (see the INTERACTIVE MODE section), then this environment

variable has no effect because dc(1) exits on SIGINT when not in interactive mode.

However, when dc(1) is in interactive mode, then if this environment variable exists and contains

an integer, a non-zero value makes dc(1) reset on SIGINT, rather than exit, and zero makes dc(1)

exit. If this environment variable exists and is not an integer, then dc(1) will exit on SIGINT.

This environment variable overrides the default, which can be queried with the -h or --help
options.

DC_TTY_MODE
If TTY mode is not available (see the TTY MODE section), then this environment variable has no

effect.

However, when TTY mode is available, then if this environment variable exists and contains an

integer, then a non-zero value makes dc(1) use TTY mode, and zero makes dc(1) not use TTY

mode.

This environment variable overrides the default, which can be queried with the -h or --help
options.

DC_PROMPT
If TTY mode is not available (see the TTY MODE section), then this environment variable has no

effect.

However, when TTY mode is available, then if this environment variable exists and contains an

integer, a non-zero value makes dc(1) use a prompt, and zero or a non-integer makes dc(1) not use

a prompt. If this environment variable does not exist and DC_TTY_MODE does, then the value of

the DC_TTY_MODE environment variable is used.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

This environment variable and the DC_TTY_MODE environment variable override the default,

which can be queried with the -h or --help options.

DC_EXPR_EXIT
If any expressions or expression files are given on the command-line with -e, --expression, -f, or

--file, then if this environment variable exists and contains an integer, a non-zero value makes

dc(1) exit after executing the expressions and expression files, and a zero value makes dc(1) not

exit.

This environment variable overrides the default, which can be queried with the -h or --help
options.

DC_DIGIT_CLAMP
When parsing numbers and if this environment variable exists and contains an integer, a non-zero

value makes dc(1) clamp digits that are greater than or equal to the current ibase so that all such

digits are considered equal to the ibase minus 1, and a zero value disables such clamping so that

those digits are always equal to their value, which is multiplied by the power of the ibase.

This never applies to single-digit numbers, as per the bc(1) standard (see the STANDARDS
section).

This environment variable overrides the default, which can be queried with the -h or --help
options.

EXIT STATUS
dc(1) returns the following exit statuses:

0 No error.

1 A math error occurred. This follows standard practice of using 1 for expected errors, since math

errors will happen in the process of normal execution.

Math errors include divide by 0, taking the square root of a negative number, using a negative

number as a bound for the pseudo-random number generator, attempting to convert a negative

number to a hardware integer, overflow when converting a number to a hardware integer, overflow

when calculating the size of a number, and attempting to use a non-integer where an integer is

required.

Converting to a hardware integer happens for the second operand of the power (^), places (@), left

shift (H), and right shift (h) operators.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

2 A parse error occurred.

Parse errors include unexpected EOF, using an invalid character, failing to find the end of a string

or comment, and using a token where it is invalid.

3 A runtime error occurred.

Runtime errors include assigning an invalid number to any global (ibase, obase, or scale), giving a

bad expression to a read() call, calling read() inside of a read() call, type errors (including

attempting to execute a number), and attempting an operation when the stack has too few elements.

4 A fatal error occurred.

Fatal errors include memory allocation errors, I/O errors, failing to open files, attempting to use

files that do not have only ASCII characters (dc(1) only accepts ASCII characters), attempting to

open a directory as a file, and giving invalid command-line options.

The exit status 4 is special; when a fatal error occurs, dc(1) always exits and returns 4, no matter what

mode dc(1) is in.

The other statuses will only be returned when dc(1) is not in interactive mode (see the INTERACTIVE
MODE section), since dc(1) resets its state (see the RESET section) and accepts more input when one

of those errors occurs in interactive mode. This is also the case when interactive mode is forced by the

-i flag or --interactive option.

These exit statuses allow dc(1) to be used in shell scripting with error checking, and its normal

behavior can be forced by using the -i flag or --interactive option.

INTERACTIVE MODE
Like bc(1), dc(1) has an interactive mode and a non-interactive mode. Interactive mode is turned on

automatically when both stdin and stdout are hooked to a terminal, but the -i flag and --interactive
option can turn it on in other situations.

In interactive mode, dc(1) attempts to recover from errors (see the RESET section), and in normal

execution, flushes stdout as soon as execution is done for the current input. dc(1) may also reset on

SIGINT instead of exit, depending on the contents of, or default for, the DC_SIGINT_RESET
environment variable (see the ENVIRONMENT VARIABLES section).

TTY MODE
If stdin, stdout, and stderr are all connected to a TTY, then "TTY mode" is considered to be available,

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

and thus, dc(1) can turn on TTY mode, subject to some settings.

If there is the environment variable DC_TTY_MODE in the environment (see the ENVIRONMENT
VARIABLES section), then if that environment variable contains a non-zero integer, dc(1) will turn on

TTY mode when stdin, stdout, and stderr are all connected to a TTY. If the DC_TTY_MODE
environment variable exists but is not a non-zero integer, then dc(1) will not turn TTY mode on.

If the environment variable DC_TTY_MODE does not exist, the default setting is used. The default

setting can be queried with the -h or --help options.

TTY mode is different from interactive mode because interactive mode is required in the bc(1)

specification (see the STANDARDS section), and interactive mode requires only stdin and stdout to be

connected to a terminal.

Command-Line History
Command-line history is only enabled if TTY mode is, i.e., that stdin, stdout, and stderr are connected

to a TTY and the DC_TTY_MODE environment variable (see the ENVIRONMENT VARIABLES
section) and its default do not disable TTY mode. See the COMMAND LINE HISTORY section for

more information.

Prompt
If TTY mode is available, then a prompt can be enabled. Like TTY mode itself, it can be turned on or

off with an environment variable: DC_PROMPT (see the ENVIRONMENT VARIABLES section).

If the environment variable DC_PROMPT exists and is a non-zero integer, then the prompt is turned on

when stdin, stdout, and stderr are connected to a TTY and the -P and --no-prompt options were not

used. The read prompt will be turned on under the same conditions, except that the -R and --no-read-
prompt options must also not be used.

However, if DC_PROMPT does not exist, the prompt can be enabled or disabled with the

DC_TTY_MODE environment variable, the -P and --no-prompt options, and the -R and --no-read-
prompt options. See the ENVIRONMENT VARIABLES and OPTIONS sections for more details.

SIGNAL HANDLING
Sending a SIGINT will cause dc(1) to do one of two things.

If dc(1) is not in interactive mode (see the INTERACTIVE MODE section), or the

DC_SIGINT_RESET environment variable (see the ENVIRONMENT VARIABLES section), or its

default, is either not an integer or it is zero, dc(1) will exit.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

However, if dc(1) is in interactive mode, and the DC_SIGINT_RESET or its default is an integer and

non-zero, then dc(1) will stop executing the current input and reset (see the RESET section) upon

receiving a SIGINT.

Note that "current input" can mean one of two things. If dc(1) is processing input from stdin in

interactive mode, it will ask for more input. If dc(1) is processing input from a file in interactive mode,

it will stop processing the file and start processing the next file, if one exists, or ask for input from stdin
if no other file exists.

This means that if a SIGINT is sent to dc(1) as it is executing a file, it can seem as though dc(1) did not

respond to the signal since it will immediately start executing the next file. This is by design; most

files that users execute when interacting with dc(1) have function definitions, which are quick to parse.

If a file takes a long time to execute, there may be a bug in that file. The rest of the files could still be

executed without problem, allowing the user to continue.

SIGTERM and SIGQUIT cause dc(1) to clean up and exit, and it uses the default handler for all other

signals. The one exception is SIGHUP; in that case, and only when dc(1) is in TTY mode (see the

TTY MODE section), a SIGHUP will cause dc(1) to clean up and exit.

COMMAND LINE HISTORY
dc(1) supports interactive command-line editing.

If dc(1) can be in TTY mode (see the TTY MODE section), history can be enabled. This means that

command-line history can only be enabled when stdin, stdout, and stderr are all connected to a TTY.

Like TTY mode itself, it can be turned on or off with the environment variable DC_TTY_MODE (see

the ENVIRONMENT VARIABLES section).

Note: tabs are converted to 8 spaces.

LOCALES
This dc(1) ships with support for adding error messages for different locales and thus, supports

LC_MESSAGES.

SEE ALSO
bc(1)

STANDARDS
The dc(1) utility operators and some behavior are compliant with the operators in the IEEE Std

1003.1-2017 ("POSIX.1-2017") bc(1) specification at

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html .

BUGS
None are known. Report bugs at https://git.gavinhoward.com/gavin/bc .

AUTHOR
Gavin D. Howard <gavin@gavinhoward.com> and contributors.

DC(1) General Commands Manual DC(1)

Gavin D. Howard February 2023 DC(1)

