
NAME
ipfw, dnctl - User interface for firewall, traffic shaper, packet scheduler, in-kernel NAT.

SYNOPSIS
FIREWALL CONFIGURATION
ipfw [-cq] add rule

ipfw [-acdefnNStT] [set N] {list | show} [rule | first-last ...]

ipfw [-f | -q] [set N] flush
ipfw [-q] [set N] {delete | zero | resetlog} [number ...]

ipfw set [disable number ...] [enable number ...]

ipfw set move [rule] number to number

ipfw set swap number number

ipfw set show

SYSCTL SHORTCUTS
ipfw enable {firewall | altq | one_pass | debug | verbose | dyn_keepalive}

ipfw disable {firewall | altq | one_pass | debug | verbose | dyn_keepalive}

LOOKUP TABLES
ipfw [set N] table name create create-options

ipfw [set N] table {name | all} destroy
ipfw [set N] table name modify modify-options

ipfw [set N] table name swap name

ipfw [set N] table name add table-key [value]

ipfw [set N] table name add [table-key value ...]

ipfw [set N] table name atomic add [table-key value ...]

ipfw [set N] table name delete [table-key ...]

ipfw [set N] table name lookup addr

ipfw [set N] table name lock
ipfw [set N] table name unlock
ipfw [set N] table {name | all} list
ipfw [set N] table {name | all} info
ipfw [set N] table {name | all} detail
ipfw [set N] table {name | all} flush

DUMMYNET CONFIGURATION (TRAFFIC SHAPER AND PACKET SCHEDULER)
dnctl {pipe | queue | sched} number config config-options

dnctl [-s [field]] {pipe | queue | sched} {delete | list | show} [number ...]

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

IN-KERNEL NAT
ipfw [-q] nat number config config-options

ipfw nat number show {config | log}

STATEFUL IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
ipfw [set N] nat64lsn name create create-options

ipfw [set N] nat64lsn name config config-options

ipfw [set N] nat64lsn {name | all} {list | show} [states]

ipfw [set N] nat64lsn {name | all} destroy
ipfw [set N] nat64lsn name stats [reset]

STATELESS IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
ipfw [set N] nat64stl name create create-options

ipfw [set N] nat64stl name config config-options

ipfw [set N] nat64stl {name | all} {list | show}

ipfw [set N] nat64stl {name | all} destroy
ipfw [set N] nat64stl name stats [reset]

XLAT464 CLAT IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
ipfw [set N] nat64clat name create create-options

ipfw [set N] nat64clat name config config-options

ipfw [set N] nat64clat {name | all} {list | show}

ipfw [set N] nat64clat {name | all} destroy
ipfw [set N] nat64clat name stats [reset]

IPv6-to-IPv6 NETWORK PREFIX TRANSLATION
ipfw [set N] nptv6 name create create-options

ipfw [set N] nptv6 {name | all} {list | show}

ipfw [set N] nptv6 {name | all} destroy
ipfw [set N] nptv6 name stats [reset]

INTERNAL DIAGNOSTICS
ipfw internal iflist
ipfw internal talist
ipfw internal vlist

LIST OF RULES AND PREPROCESSING
ipfw [-cfnNqS] [-p preproc [preproc-flags]] pathname

DESCRIPTION

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

The ipfw utility is the user interface for controlling the ipfw(4) firewall, the dummynet(4) traffic

shaper/packet scheduler, and the in-kernel NAT services.

A firewall configuration, or ruleset, is made of a list of rules numbered from 1 to 65535. Packets are

passed to the firewall from a number of different places in the protocol stack (depending on the source

and destination of the packet, it is possible for the firewall to be invoked multiple times on the same

packet). The packet passed to the firewall is compared against each of the rules in the ruleset, in rule-

number order (multiple rules with the same number are permitted, in which case they are processed in

order of insertion). When a match is found, the action corresponding to the matching rule is performed.

Depending on the action and certain system settings, packets can be reinjected into the firewall at some

rule after the matching one for further processing.

A ruleset always includes a default rule (numbered 65535) which cannot be modified or deleted, and

matches all packets. The action associated with the default rule can be either deny or allow depending

on how the kernel is configured.

If the ruleset includes one or more rules with the keep-state, record-state, limit or set-limit option, the

firewall will have a stateful behaviour, i.e., upon a match it will create dynamic rules, i.e., rules that

match packets with the same 5-tuple (protocol, source and destination addresses and ports) as the packet

which caused their creation. Dynamic rules, which have a limited lifetime, are checked at the first

occurrence of a check-state, keep-state or limit rule, and are typically used to open the firewall on-

demand to legitimate traffic only. Please note, that keep-state and limit imply implicit check-state for all

packets (not only these matched by the rule) but record-state and set-limit have no implicit check-state.

See the STATEFUL FIREWALL and EXAMPLES Sections below for more information on the stateful

behaviour of ipfw.

All rules (including dynamic ones) have a few associated counters: a packet count, a byte count, a log

count and a timestamp indicating the time of the last match. Counters can be displayed or reset with

ipfw commands.

Each rule belongs to one of 32 different sets , and there are ipfw commands to atomically manipulate

sets, such as enable, disable, swap sets, move all rules in a set to another one, delete all rules in a set.

These can be useful to install temporary configurations, or to test them. See Section SETS OF RULES

for more information on sets.

Rules can be added with the add command; deleted individually or in groups with the delete command,

and globally (except those in set 31) with the flush command; displayed, optionally with the content of

the counters, using the show and list commands. Finally, counters can be reset with the zero and

resetlog commands.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

COMMAND OPTIONS
The following general options are available when invoking ipfw:

-a Show counter values when listing rules. The show command implies this option.

-b Only show the action and the comment, not the body of a rule. Implies -c.

-c When entering or showing rules, print them in compact form, i.e., omitting the "ip from any to

any" string when this does not carry any additional information.

-d When listing, show dynamic rules in addition to static ones.

-D When listing, show only dynamic states. When deleting, delete only dynamic states.

-f Run without prompting for confirmation for commands that can cause problems if misused, i.e.,

flush. If there is no tty associated with the process, this is implied. The delete command with

this flag ignores possible errors, i.e., nonexistent rule number. And for batched commands

execution continues with the next command.

-i When listing a table (see the LOOKUP TABLES section below for more information on lookup

tables), format values as IP addresses. By default, values are shown as integers.

-n Only check syntax of the command strings, without actually passing them to the kernel.

-N Try to resolve addresses and service names in output.

-q Be quiet when executing the add, nat, zero, resetlog or flush commands; (implies -f). This is

useful when updating rulesets by executing multiple ipfw commands in a script (e.g.,

‘sh /etc/rc.firewall’), or by processing a file with many ipfw rules across a remote login session.

It also stops a table add or delete from failing if the entry already exists or is not present.

The reason why this option may be important is that for some of these actions, ipfw may print a

message; if the action results in blocking the traffic to the remote client, the remote login session

will be closed and the rest of the ruleset will not be processed. Access to the console would then

be required to recover.

-S When listing rules, show the set each rule belongs to. If this flag is not specified, disabled rules

will not be listed.

-s [field]

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

When listing pipes, sort according to one of the four counters (total or current packets or bytes).

-t When listing, show last match timestamp converted with ctime().

-T When listing, show last match timestamp as seconds from the epoch. This form can be more

convenient for postprocessing by scripts.

LIST OF RULES AND PREPROCESSING
To ease configuration, rules can be put into a file which is processed using ipfw as shown in the last

synopsis line. An absolute pathname must be used. The file will be read line by line and applied as

arguments to the ipfw utility.

Optionally, a preprocessor can be specified using -p preproc where pathname is to be piped through.

Useful preprocessors include cpp(1) and m4(1). If preproc does not start with a slash (‘/’) as its first

character, the usual PATH name search is performed. Care should be taken with this in environments

where not all file systems are mounted (yet) by the time ipfw is being run (e.g. when they are mounted

over NFS). Once -p has been specified, any additional arguments are passed on to the preprocessor for

interpretation. This allows for flexible configuration files (like conditionalizing them on the local

hostname) and the use of macros to centralize frequently required arguments like IP addresses.

TRAFFIC SHAPER CONFIGURATION
The dnctl pipe, queue and sched commands are used to configure the traffic shaper and packet scheduler.

See the TRAFFIC SHAPER (DUMMYNET) CONFIGURATION Section below for details.

If the world and the kernel get out of sync the ipfw ABI may break, preventing you from being able to

add any rules. This can adversely affect the booting process. You can use ipfw disable firewall to

temporarily disable the firewall to regain access to the network, allowing you to fix the problem.

PACKET FLOW
A packet is checked against the active ruleset in multiple places in the protocol stack, under control of

several sysctl variables. These places and variables are shown below, and it is important to have this

picture in mind in order to design a correct ruleset.

^ to upper layers V

| |

+----------->-----------+

^ V

[ip(6)_input] [ip(6)_output] net.inet(6).ip(6).fw.enable=1

| |

^ V

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

[ether_demux] [ether_output_frame] net.link.ether.ipfw=1

| |

+-->--[bdg_forward]-->--+ net.link.bridge.ipfw=1

^ V

| to devices |

The number of times the same packet goes through the firewall can vary between 0 and 4 depending on

packet source and destination, and system configuration.

Note that as packets flow through the stack, headers can be stripped or added to it, and so they may or

may not be available for inspection. E.g., incoming packets will include the MAC header when ipfw is

invoked from ether_demux(), but the same packets will have the MAC header stripped off when ipfw is

invoked from ip_input() or ip6_input().

Also note that each packet is always checked against the complete ruleset, irrespective of the place

where the check occurs, or the source of the packet. If a rule contains some match patterns or actions

which are not valid for the place of invocation (e.g. trying to match a MAC header within ip_input or

ip6_input), the match pattern will not match, but a not operator in front of such patterns will cause the

pattern to always match on those packets. It is thus the responsibility of the programmer, if necessary, to

write a suitable ruleset to differentiate among the possible places. skipto rules can be useful here, as an

example:

packets from ether_demux or bdg_forward

ipfw add 10 skipto 1000 all from any to any layer2 in

packets from ip_input

ipfw add 10 skipto 2000 all from any to any not layer2 in

packets from ip_output

ipfw add 10 skipto 3000 all from any to any not layer2 out

packets from ether_output_frame

ipfw add 10 skipto 4000 all from any to any layer2 out

(yes, at the moment there is no way to differentiate between ether_demux and bdg_forward).

Also note that only actions allow, deny, netgraph, ngtee and related to dummynet are processed for

layer2 frames and all other actions act as if they were allow for such frames. Full set of actions is

supported for IP packets without layer2 headers only. For example, divert action does not divert layer2
frames.

SYNTAX
In general, each keyword or argument must be provided as a separate command line argument, with no

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

leading or trailing spaces. Keywords are case-sensitive, whereas arguments may or may not be case-

sensitive depending on their nature (e.g. uid’s are, hostnames are not).

Some arguments (e.g., port or address lists) are comma-separated lists of values. In this case, spaces

after commas ’,’ are allowed to make the line more readable. You can also put the entire command

(including flags) into a single argument. E.g., the following forms are equivalent:

ipfw -q add deny src-ip 10.0.0.0/24,127.0.0.1/8

ipfw -q add deny src-ip 10.0.0.0/24, 127.0.0.1/8

ipfw "-q add deny src-ip 10.0.0.0/24, 127.0.0.1/8"

RULE FORMAT
The format of firewall rules is the following:

[rule_number] [set set_number] [prob match_probability] action [log [logamount number]]

[altq queue] [{tag | untag} number] body

where the body of the rule specifies which information is used for filtering packets, among the

following:

Layer2 header fields When available

IPv4 and IPv6 Protocol SCTP, TCP, UDP, ICMP, etc.

Source and dest. addresses and ports

Direction See Section PACKET FLOW

Transmit and receive interface By name or address

Misc. IP header fields Version, type of service, datagram length, identification,

fragmentation flags, Time To Live

IP options

IPv6 Extension headers Fragmentation, Hop-by-Hop options, Routing Headers,

Source routing rthdr0, Mobile IPv6 rthdr2, IPSec options.

IPv6 Flow-ID

Misc. TCP header fields TCP flags (SYN, FIN, ACK, RST, etc.), sequence number,

acknowledgment number, window

TCP options

ICMP types for ICMP packets

ICMP6 types for ICMP6 packets

User/group ID When the packet can be associated with a local socket.

Divert status Whether a packet came from a divert socket (e.g., natd(8)).

Fib annotation state Whether a packet has been tagged for using a specific FIB

(routing table) in future forwarding decisions.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Note that some of the above information, e.g. source MAC or IP addresses and TCP/UDP ports, can be

easily spoofed, so filtering on those fields alone might not guarantee the desired results.

rule_number

Each rule is associated with a rule_number in the range 1..65535, with the latter reserved for the

default rule. Rules are checked sequentially by rule number. Multiple rules can have the same

number, in which case they are checked (and listed) according to the order in which they have

been added. If a rule is entered without specifying a number, the kernel will assign one in such a

way that the rule becomes the last one before the default rule. Automatic rule numbers are

assigned by incrementing the last non-default rule number by the value of the sysctl variable

net.inet.ip.fw.autoinc_step which defaults to 100. If this is not possible (e.g. because we would

go beyond the maximum allowed rule number), the number of the last non-default value is used

instead.

set set_number

Each rule is associated with a set_number in the range 0..31. Sets can be individually disabled

and enabled, so this parameter is of fundamental importance for atomic ruleset manipulation. It

can be also used to simplify deletion of groups of rules. If a rule is entered without specifying a

set number, set 0 will be used.

Set 31 is special in that it cannot be disabled, and rules in set 31 are not deleted by the ipfw flush
command (but you can delete them with the ipfw delete set 31 command). Set 31 is also used for

the default rule.

prob match_probability

A match is only declared with the specified probability (floating point number between 0 and 1).

This can be useful for a number of applications such as random packet drop or (in conjunction

with dummynet) to simulate the effect of multiple paths leading to out-of-order packet delivery.

Note: this condition is checked before any other condition, including ones such as keep-state or

check-state which might have side effects.

log [logamount number]

Packets matching a rule with the log keyword will be made available for logging in two ways: if

the sysctl variable net.inet.ip.fw.verbose is set to 0 (default), one can use bpf(4) attached to the

ipfw0 pseudo interface. This pseudo interface can be created manually after a system boot by

using the following command:

ifconfig ipfw0 create

Or, automatically at boot time by adding the following line to the rc.conf(5) file:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

firewall_logif="YES"

There is zero overhead when no bpf(4) is attached to the pseudo interface.

If net.inet.ip.fw.verbose is set to 1, packets will be logged to syslogd(8) with a LOG_SECURITY

facility up to a maximum of logamount packets. If no logamount is specified, the limit is taken

from the sysctl variable net.inet.ip.fw.verbose_limit. In both cases, a value of 0 means unlimited

logging.

Once the limit is reached, logging can be re-enabled by clearing the logging counter or the packet

counter for that entry, see the resetlog command.

Note: logging is done after all other packet matching conditions have been successfully verified,

and before performing the final action (accept, deny, etc.) on the packet.

tag number

When a packet matches a rule with the tag keyword, the numeric tag for the given number in the

range 1..65534 will be attached to the packet. The tag acts as an internal marker (it is not sent

out over the wire) that can be used to identify these packets later on. This can be used, for

example, to provide trust between interfaces and to start doing policy-based filtering. A packet

can have multiple tags at the same time. Tags are "sticky", meaning once a tag is applied to a

packet by a matching rule it exists until explicit removal. Tags are kept with the packet

everywhere within the kernel, but are lost when the packet leaves the kernel, for example, on

transmitting packet out to the network or sending packet to a divert(4) socket.

To check for previously applied tags, use the tagged rule option. To delete previously applied

tag, use the untag keyword.

Note: since tags are kept with the packet everywhere in kernelspace, they can be set and unset

anywhere in the kernel network subsystem (using the mbuf_tags(9) facility), not only by means

of the ipfw(4) tag and untag keywords. For example, there can be a specialized netgraph(4) node

doing traffic analyzing and tagging for later inspecting in firewall.

untag number

When a packet matches a rule with the untag keyword, the tag with the number number is

searched among the tags attached to this packet and, if found, removed from it. Other tags bound

to packet, if present, are left untouched.

setmark value | tablearg

When a packet matches a rule with the setmark keyword, a 32-bit numeric mark is assigned to

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

the packet. The mark is an extension to the tags. As tags, mark is "sticky" so the value is kept

the same within the kernel and is lost when the packet leaves the kernel. Unlike tags, mark can

be matched as a lookup table key or compared with bitwise mask applied against another value.

Each packet can have only one mark, so setmark always overwrites the previous mark value.

The initial mark value is 0. To check the current mark value, use the mark rule option. Mark

value can be entered as decimal or hexadecimal (if prefixed by 0x), and they are always printed

as hexadecimal.

altq queue

When a packet matches a rule with the altq keyword, the ALTQ identifier for the given queue

(see altq(4)) will be attached. Note that this ALTQ tag is only meaningful for packets going

"out" of IPFW, and not being rejected or going to divert sockets. Note that if there is insufficient

memory at the time the packet is processed, it will not be tagged, so it is wise to make your

ALTQ "default" queue policy account for this. If multiple altq rules match a single packet, only

the first one adds the ALTQ classification tag. In doing so, traffic may be shaped by using count
altq queue rules for classification early in the ruleset, then later applying the filtering decision.

For example, check-state and keep-state rules may come later and provide the actual filtering

decisions in addition to the fallback ALTQ tag.

You must run pfctl(8) to set up the queues before IPFW will be able to look them up by name,

and if the ALTQ disciplines are rearranged, the rules in containing the queue identifiers in the

kernel will likely have gone stale and need to be reloaded. Stale queue identifiers will probably

result in misclassification.

All system ALTQ processing can be turned on or off via ipfw enable altq and ipfw disable altq.

The usage of net.inet.ip.fw.one_pass is irrelevant to ALTQ traffic shaping, as the actual rule

action is followed always after adding an ALTQ tag.

RULE ACTIONS
A rule can be associated with one of the following actions, which will be executed when the packet

matches the body of the rule.

allow | accept | pass | permit
Allow packets that match rule. The search terminates.

check-state [:flowname | :any]

Checks the packet against the dynamic ruleset. If a match is found, execute the action associated

with the rule which generated this dynamic rule, otherwise move to the next rule.

Check-state rules do not have a body. If no check-state rule is found, the dynamic ruleset is

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

checked at the first keep-state or limit rule. The :flowname is symbolic name assigned to

dynamic rule by keep-state opcode. The special flowname :any can be used to ignore states

flowname when matching. The :default keyword is special name used for compatibility with old

rulesets.

count Update counters for all packets that match rule. The search continues with the next rule.

deny | drop
Discard packets that match this rule. The search terminates.

divert port

Divert packets that match this rule to the divert(4) socket bound to port port. The search

terminates.

fwd | forward ipaddr | tablearg[,port]

Change the next-hop on matching packets to ipaddr, which can be an IP address or a host name.

The next hop can also be supplied by the last table looked up for the packet by using the tablearg
keyword instead of an explicit address. The search terminates if this rule matches.

If ipaddr is a local address, then matching packets will be forwarded to port (or the port number

in the packet if one is not specified in the rule) on the local machine.

If ipaddr is not a local address, then the port number (if specified) is ignored, and the packet will

be forwarded to the remote address, using the route as found in the local routing table for that IP.

A fwd rule will not match layer2 packets (those received on ether_input, ether_output, or

bridged).

The fwd action does not change the contents of the packet at all. In particular, the destination

address remains unmodified, so packets forwarded to another system will usually be rejected by

that system unless there is a matching rule on that system to capture them. For packets

forwarded locally, the local address of the socket will be set to the original destination address of

the packet. This makes the netstat(1) entry look rather weird but is intended for use with

transparent proxy servers.

nat nat_nr | global | tablearg

Pass packet to a nat instance (for network address translation, address redirect, etc.): see the

NETWORK ADDRESS TRANSLATION (NAT) Section for further information.

nat64lsn name

Pass packet to a stateful NAT64 instance (for IPv6/IPv4 network address and protocol

translation): see the IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION

Section for further information.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

nat64stl name

Pass packet to a stateless NAT64 instance (for IPv6/IPv4 network address and protocol

translation): see the IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION

Section for further information.

nat64clat name

Pass packet to a CLAT NAT64 instance (for client-side IPv6/IPv4 network address and protocol

translation): see the IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION

Section for further information.

nptv6 name

Pass packet to a NPTv6 instance (for IPv6-to-IPv6 network prefix translation): see the IPv6-to-

IPv6 NETWORK PREFIX TRANSLATION (NPTv6) Section for further information.

pipe pipe_nr

Pass packet to a dummynet "pipe" (for bandwidth limitation, delay, etc.). See the TRAFFIC

SHAPER (DUMMYNET) CONFIGURATION Section for further information. The search

terminates; however, on exit from the pipe and if the sysctl(8) variable net.inet.ip.fw.one_pass is

not set, the packet is passed again to the firewall code starting from the next rule.

queue queue_nr

Pass packet to a dummynet "queue" (for bandwidth limitation using WF2Q+).

reject (Deprecated). Synonym for unreach host.

reset Discard packets that match this rule, and if the packet is a TCP packet, try to send a TCP reset

(RST) notice. The search terminates.

reset6 Discard packets that match this rule, and if the packet is a TCP packet, try to send a TCP reset

(RST) notice. The search terminates.

skipto number | tablearg

Skip all subsequent rules numbered less than number. The search continues with the first rule

numbered number or higher. It is possible to use the tablearg keyword with a skipto for a

computed skipto. Skipto may work either in O(log(N)) or in O(1) depending on amount of

memory and/or sysctl variables. See the SYSCTL VARIABLES section for more details.

call number | tablearg

The current rule number is saved in the internal stack and ruleset processing continues with the

first rule numbered number or higher. If later a rule with the return action is encountered, the

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

processing returns to the first rule with number of this call rule plus one or higher (the same

behaviour as with packets returning from divert(4) socket after a divert action). This could be

used to make somewhat like an assembly language "subroutine" calls to rules with common

checks for different interfaces, etc.

Rule with any number could be called, not just forward jumps as with skipto. So, to prevent

endless loops in case of mistakes, both call and return actions don’t do any jumps and simply go

to the next rule if memory cannot be allocated or stack overflowed/underflowed.

Internally stack for rule numbers is implemented using mbuf_tags(9) facility and currently has

size of 16 entries. As mbuf tags are lost when packet leaves the kernel, divert should not be used

in subroutines to avoid endless loops and other undesired effects.

return Takes rule number saved to internal stack by the last call action and returns ruleset processing to

the first rule with number greater than number of corresponding call rule. See description of the

call action for more details.

Note that return rules usually end a "subroutine" and thus are unconditional, but ipfw command-

line utility currently requires every action except check-state to have body. While it is

sometimes useful to return only on some packets, usually you want to print just "return" for

readability. A workaround for this is to use new syntax and -c switch:

Add a rule without actual body

ipfw add 2999 return via any

List rules without "from any to any" part

ipfw -c list

This cosmetic annoyance may be fixed in future releases.

tee port

Send a copy of packets matching this rule to the divert(4) socket bound to port port. The search

continues with the next rule.

unreach code [mtu]

Discard packets that match this rule, and try to send an ICMP unreachable notice with code code,

where code is a number from 0 to 255, or one of these aliases: net, host, protocol, port, needfrag,

srcfail, net-unknown, host-unknown, isolated, net-prohib, host-prohib, tosnet, toshost,
filter-prohib, host-precedence or precedence-cutoff. The needfrag code may have an optional

mtu parameter. If specified, the MTU value will be put into generated ICMP packet. The search

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

terminates.

unreach6 code

Discard packets that match this rule, and try to send an ICMPv6 unreachable notice with code

code, where code is a number from 0, 1, 3 or 4, or one of these aliases: no-route, admin-prohib,
address or port. The search terminates.

netgraph cookie

Divert packet into netgraph with given cookie. The search terminates. If packet is later returned

from netgraph it is either accepted or continues with the next rule, depending on

net.inet.ip.fw.one_pass sysctl variable.

ngtee cookie

A copy of packet is diverted into netgraph, original packet continues with the next rule. See

ng_ipfw(4) for more information on netgraph and ngtee actions.

setfib fibnum | tablearg

The packet is tagged so as to use the FIB (routing table) fibnum in any subsequent forwarding

decisions. In the current implementation, this is limited to the values 0 through 15, see setfib(2).

Processing continues at the next rule. It is possible to use the tablearg keyword with setfib. If

the tablearg value is not within the compiled range of fibs, the packet’s fib is set to 0.

setdscp DSCP | number | tablearg

Set specified DiffServ codepoint for an IPv4/IPv6 packet. Processing continues at the next rule.

Supported values are:

cs0 (000000), cs1 (001000), cs2 (010000), cs3 (011000), cs4 (100000), cs5 (101000), cs6
(110000), cs7 (111000), af11 (001010), af12 (001100), af13 (001110), af21 (010010), af22
(010100), af23 (010110), af31 (011010), af32 (011100), af33 (011110), af41 (100010), af42
(100100), af43 (100110), va (101100), ef (101110), be (000000). Additionally, DSCP value can

be specified by number (0..63). It is also possible to use the tablearg keyword with setdscp. If

the tablearg value is not within the 0..63 range, lower 6 bits of supplied value are used.

tcp-setmss mss

Set the Maximum Segment Size (MSS) in the TCP segment to value mss. The kernel module

ipfw_pmod should be loaded or kernel should have options IPFIREWALL_PMOD to be able use

this action. This command does not change a packet if original MSS value is lower than

specified value. Both TCP over IPv4 and over IPv6 are supported. Regardless of matched a

packet or not by the tcp-setmss rule, the search continues with the next rule.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

reass Queue and reassemble IPv4 fragments. If the packet is not fragmented, counters are updated and

processing continues with the next rule. If the packet is the last logical fragment, the packet is

reassembled and, if net.inet.ip.fw.one_pass is set to 0, processing continues with the next rule.

Otherwise, the packet is allowed to pass and the search terminates. If the packet is a fragment in

the middle of a logical group of fragments, it is consumed and processing stops immediately.

Fragment handling can be tuned via net.inet.ip.maxfragpackets and

net.inet.ip.maxfragsperpacket which limit, respectively, the maximum number of processable

fragments (default: 800) and the maximum number of fragments per packet (default: 16).

NOTA BENE: since fragments do not contain port numbers, they should be avoided with the

reass rule. Alternatively, direction-based (like in / out) and source-based (like via) match

patterns can be used to select fragments.

Usually a simple rule like:

reassemble incoming fragments

ipfw add reass all from any to any in

is all you need at the beginning of your ruleset.

abort Discard packets that match this rule, and if the packet is an SCTP packet, try to send an SCTP

packet containing an ABORT chunk. The search terminates.

abort6
Discard packets that match this rule, and if the packet is an SCTP packet, try to send an SCTP

packet containing an ABORT chunk. The search terminates.

RULE BODY
The body of a rule contains zero or more patterns (such as specific source and destination addresses or

ports, protocol options, incoming or outgoing interfaces, etc.) that the packet must match in order to be

recognised. In general, the patterns are connected by (implicit) and operators -- i.e., all must match in

order for the rule to match. Individual patterns can be prefixed by the not operator to reverse the result

of the match, as in

ipfw add 100 allow ip from not 1.2.3.4 to any

Additionally, sets of alternative match patterns (or-blocks) can be constructed by putting the patterns in

lists enclosed between parentheses () or braces { }, and using the or operator as follows:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

ipfw add 100 allow ip from { x or not y or z } to any

Only one level of parentheses is allowed. Beware that most shells have special meanings for

parentheses or braces, so it is advisable to put a backslash \ in front of them to prevent such

interpretations.

The body of a rule must in general include a source and destination address specifier. The keyword any

can be used in various places to specify that the content of a required field is irrelevant.

The rule body has the following format:

[proto from src to dst] [options]

The first part (proto from src to dst) is for backward compatibility with earlier versions of FreeBSD. In

modern FreeBSD any match pattern (including MAC headers, IP protocols, addresses and ports) can be

specified in the options section.

Rule fields have the following meaning:

proto: protocol | { protocol or ... }

protocol: [not] protocol-name | protocol-number

An IP protocol specified by number or name (for a complete list see /etc/protocols), or one of the

following keywords:

ip4 | ipv4
Matches IPv4 packets.

ip6 | ipv6
Matches IPv6 packets.

ip | all Matches any packet.

The ipv6 in proto option will be treated as inner protocol. And, the ipv4 is not available in proto
option.

The { protocol or ... } format (an or-block) is provided for convenience only but its use is

deprecated.

src and dst: {addr | { addr or ... }} [[not] ports]

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

An address (or a list, see below) optionally followed by ports specifiers.

The second format (or-block with multiple addresses) is provided for convenience only and its

use is discouraged.

addr: [not] {any | me | me6 | table(name[,value]) | addr-list | addr-set}

any Matches any IP address.

me Matches any IP address configured on an interface in the system.

me6 Matches any IPv6 address configured on an interface in the system. The address list is

evaluated at the time the packet is analysed.

table(name[,value])

Matches any IPv4 or IPv6 address for which an entry exists in the lookup table number.

If an optional 32-bit unsigned value is also specified, an entry will match only if it has

this value. See the LOOKUP TABLES section below for more information on lookup

tables.

addr-list: ip-addr[,addr-list]

ip-addr:

A host or subnet address specified in one of the following ways:

numeric-ip | hostname

Matches a single IPv4 address, specified as dotted-quad or a hostname. Hostnames are

resolved at the time the rule is added to the firewall list.

addr/masklen

Matches all addresses with base addr (specified as an IP address, a network number, or a

hostname) and mask width of masklen bits. As an example, 1.2.3.4/25 or 1.2.3.0/25 will

match all IP numbers from 1.2.3.0 to 1.2.3.127 .

addr:mask

Matches all addresses with base addr (specified as an IP address, a network number, or a

hostname) and the mask of mask, specified as a dotted quad. As an example,

1.2.3.4:255.0.255.0 or 1.0.3.0:255.0.255.0 will match 1.*.3.*. This form is advised only

for non-contiguous masks. It is better to resort to the addr/masklen format for contiguous

masks, which is more compact and less error-prone.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

addr-set: addr[/masklen]{list}

list: {num | num-num}[,list]

Matches all addresses with base address addr (specified as an IP address, a network number, or a

hostname) and whose last byte is in the list between braces { } . Note that there must be no

spaces between braces and numbers (spaces after commas are allowed). Elements of the list can

be specified as single entries or ranges. The masklen field is used to limit the size of the set of

addresses, and can have any value between 24 and 32. If not specified, it will be assumed as 24.

This format is particularly useful to handle sparse address sets within a single rule. Because the

matching occurs using a bitmask, it takes constant time and dramatically reduces the complexity

of rulesets.

As an example, an address specified as 1.2.3.4/24{128,35-55,89} or 1.2.3.0/24{128,35-55,89}

will match the following IP addresses:

1.2.3.128, 1.2.3.35 to 1.2.3.55, 1.2.3.89 .

addr6-list: ip6-addr[,addr6-list]

ip6-addr:

A host or subnet specified one of the following ways:

numeric-ip | hostname

Matches a single IPv6 address as allowed by inet_pton(3) or a hostname. Hostnames are

resolved at the time the rule is added to the firewall list.

addr/masklen

Matches all IPv6 addresses with base addr (specified as allowed by inet_pton(3) or a

hostname) and mask width of masklen bits.

addr/mask

Matches all IPv6 addresses with base addr (specified as allowed by inet_pton(3) or a

hostname) and the mask of mask, specified as allowed by inet_pton(3). As an example,

fe::640:0:0/ffff::ffff:ffff:0:0 will match fe:*:*:*:0:640:*:*. This form is advised only for

non-contiguous masks. It is better to resort to the addr/masklen format for contiguous

masks, which is more compact and less error-prone.

No support for sets of IPv6 addresses is provided because IPv6 addresses are typically random

past the initial prefix.

ports: {port | port-port}[,ports]

For protocols which support port numbers (such as SCTP, TCP and UDP), optional ports may be

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

specified as one or more ports or port ranges, separated by commas but no spaces, and an

optional not operator. The ‘-’ notation specifies a range of ports (including boundaries).

Service names (from /etc/services) may be used instead of numeric port values. The length of

the port list is limited to 30 ports or ranges, though one can specify larger ranges by using an

or-block in the options section of the rule.

A backslash (‘\’) can be used to escape the dash (‘-’) character in a service name (from a shell,

the backslash must be typed twice to avoid the shell itself interpreting it as an escape character).

ipfw add count tcp from any ftp\\-data-ftp to any

Fragmented packets which have a non-zero offset (i.e., not the first fragment) will never match a

rule which has one or more port specifications. See the frag option for details on matching

fragmented packets.

RULE OPTIONS (MATCH PATTERNS)
Additional match patterns can be used within rules. Zero or more of these so-called options can be

present in a rule, optionally prefixed by the not operand, and possibly grouped into or-blocks.

The following match patterns can be used (listed in alphabetical order):

// this is a comment.
Inserts the specified text as a comment in the rule. Everything following // is considered as a

comment and stored in the rule. You can have comment-only rules, which are listed as having a

count action followed by the comment.

bridged
Alias for layer2.

defer-immediate-action | defer-action
A rule with this option will not perform normal action upon a match. This option is intended to

be used with record-state or keep-state as the dynamic rule, created but ignored on match, will

work as intended. Rules with both record-state and defer-immediate-action create a dynamic

rule and continue with the next rule without actually performing the action part of this rule.

When the rule is later activated via the state table, the action is performed as usual.

diverted
Matches only packets generated by a divert socket.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

diverted-loopback
Matches only packets coming from a divert socket back into the IP stack input for delivery.

diverted-output
Matches only packets going from a divert socket back outward to the IP stack output for

delivery.

dst-ip ip-address

Matches IPv4 packets whose destination IP is one of the address(es) specified as argument.

{dst-ip6 | dst-ipv6} ip6-address

Matches IPv6 packets whose destination IP is one of the address(es) specified as argument.

dst-port ports

Matches IP packets whose destination port is one of the port(s) specified as argument.

established
Matches TCP packets that have the RST or ACK bits set.

ext6hdr header

Matches IPv6 packets containing the extended header given by header. Supported headers are:

Fragment, (frag), Hop-to-hop options (hopopt), any type of Routing Header (route), Source

routing Routing Header Type 0 (rthdr0), Mobile IPv6 Routing Header Type 2 (rthdr2),

Destination options (dstopt), IPSec authentication headers (ah), and IPsec encapsulated security

payload headers (esp).

fib fibnum

Matches a packet that has been tagged to use the given FIB (routing table) number.

flow table(name[,value])

Search for the flow entry in lookup table name. If not found, the match fails. Otherwise, the

match succeeds and tablearg is set to the value extracted from the table.

This option can be useful to quickly dispatch traffic based on certain packet fields. See the

LOOKUP TABLES section below for more information on lookup tables.

flow-id labels

Matches IPv6 packets containing any of the flow labels given in labels. labels is a comma

separated list of numeric flow labels.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

dst-mac table(name[,value])

Search for the destination MAC address entry in lookup table name. If not found, the match

fails. Otherwise, the match succeeds and tablearg is set to the value extracted from the table.

src-mac table(name[,value])

Search for the source MAC address entry in lookup table name. If not found, the match fails.

Otherwise, the match succeeds and tablearg is set to the value extracted from the table.

frag spec

Matches IPv4 packets whose ip_off field contains the comma separated list of IPv4

fragmentation options specified in spec. The recognized options are: df (don’t fragment), mf
(more fragments), rf (reserved fragment bit) offset (non-zero fragment offset). The absence of a

particular options may be denoted with a ‘!’.

Empty list of options defaults to matching on non-zero fragment offset. Such rule would match

all not the first fragment datagrams, both IPv4 and IPv6. This is a backward compatibility with

older rulesets.

gid group

Matches all TCP or UDP packets sent by or received for a group. A group may be specified by

name or number.

jail jail

Matches all TCP or UDP packets sent by or received for the jail whose ID or name is jail.

icmptypes types

Matches ICMP packets whose ICMP type is in the list types. The list may be specified as any

combination of individual types (numeric) separated by commas. Ranges are not allowed. The

supported ICMP types are:

echo reply (0), destination unreachable (3), source quench (4), redirect (5), echo request (8),

router advertisement (9), router solicitation (10), time-to-live exceeded (11), IP header bad (12),

timestamp request (13), timestamp reply (14), information request (15), information reply (16),

address mask request (17) and address mask reply (18).

icmp6types types

Matches ICMP6 packets whose ICMP6 type is in the list of types. The list may be specified as

any combination of individual types (numeric) separated by commas. Ranges are not allowed.

in | out

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Matches incoming or outgoing packets, respectively. in and out are mutually exclusive (in fact,

out is implemented as not in).

ipid id-list

Matches IPv4 packets whose ip_id field has value included in id-list, which is either a single

value or a list of values or ranges specified in the same way as ports.

iplen len-list

Matches IP packets whose total length, including header and data, is in the set len-list, which is

either a single value or a list of values or ranges specified in the same way as ports.

ipoptions spec

Matches packets whose IPv4 header contains the comma separated list of options specified in

spec. The supported IP options are:

ssrr (strict source route), lsrr (loose source route), rr (record packet route) and ts (timestamp).

The absence of a particular option may be denoted with a ‘!’.

ipprecedence precedence

Matches IPv4 packets whose precedence field is equal to precedence.

ipsec Matches packets that have IPSEC history associated with them (i.e., the packet comes

encapsulated in IPSEC, the kernel has IPSEC support, and can correctly decapsulate it).

Note that specifying ipsec is different from specifying proto ipsec as the latter will only look at

the specific IP protocol field, irrespective of IPSEC kernel support and the validity of the IPSEC

data.

Further note that this flag is silently ignored in kernels without IPSEC support. It does not affect

rule processing when given and the rules are handled as if with no ipsec flag.

iptos spec

Matches IPv4 packets whose tos field contains the comma separated list of service types

specified in spec. The supported IP types of service are:

lowdelay (IPTOS_LOWDELAY), throughput (IPTOS_THROUGHPUT), reliability
(IPTOS_RELIABILITY), mincost (IPTOS_MINCOST), congestion (IPTOS_ECN_CE). The

absence of a particular type may be denoted with a ‘!’.

dscp spec[,spec]

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Matches IPv4/IPv6 packets whose DS field value is contained in spec mask. Multiple values can

be specified via the comma separated list. Value can be one of keywords used in setdscp action

or exact number.

ipttl ttl-list

Matches IPv4 packets whose time to live is included in ttl-list, which is either a single value or a

list of values or ranges specified in the same way as ports.

ipversion ver

Matches IP packets whose IP version field is ver.

keep-state [:flowname]

Upon a match, the firewall will create a dynamic rule, whose default behaviour is to match

bidirectional traffic between source and destination IP/port using the same protocol. The rule has

a limited lifetime (controlled by a set of sysctl(8) variables), and the lifetime is refreshed every

time a matching packet is found. The :flowname is used to assign additional to addresses, ports

and protocol parameter to dynamic rule. It can be used for more accurate matching by

check-state rule. The :default keyword is special name used for compatibility with old rulesets.

layer2 Matches only layer2 packets, i.e., those passed to ipfw from ether_demux() and

ether_output_frame().

limit {src-addr | src-port | dst-addr | dst-port} N [:flowname]

The firewall will only allow N connections with the same set of parameters as specified in the

rule. One or more of source and destination addresses and ports can be specified.

lookup {dst-ip | dst-port | dst-mac | src-ip | src-port | src-mac | uid | jail | dscp | mark} name

Search an entry in lookup table name that matches the field specified as argument. If not found,

the match fails. Otherwise, the match succeeds and tablearg is set to the value extracted from the

table.

This option can be useful to quickly dispatch traffic based on certain packet fields. See the

LOOKUP TABLES section below for more information on lookup tables.

{ MAC | mac } dst-mac src-mac

Match packets with a given dst-mac and src-mac addresses, specified as the any keyword

(matching any MAC address), or six groups of hex digits separated by colons, and optionally

followed by a mask indicating the significant bits. The mask may be specified using either of the

following methods:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

1. A slash (/) followed by the number of significant bits. For example, an address with 33

significant bits could be specified as:

MAC 10:20:30:40:50:60/33 any

2. An ampersand (&) followed by a bitmask specified as six groups of hex digits separated

by colons. For example, an address in which the last 16 bits are significant could be

specified as:

MAC 10:20:30:40:50:60&00:00:00:00:ff:ff any

Note that the ampersand character has a special meaning in many shells and should

generally be escaped.

Note that the order of MAC addresses (destination first, source second) is the same as on the

wire, but the opposite of the one used for IP addresses.

mac-type mac-type

Matches packets whose Ethernet Type field corresponds to one of those specified as argument.

mac-type is specified in the same way as port numbers (i.e., one or more comma-separated single

values or ranges). You can use symbolic names for known values such as vlan, ipv4, ipv6.

Values can be entered as decimal or hexadecimal (if prefixed by 0x), and they are always printed

as hexadecimal (unless the -N option is used, in which case symbolic resolution will be

attempted).

proto protocol

Matches packets with the corresponding IP protocol.

record-state
Upon a match, the firewall will create a dynamic rule as if keep-state was specified. However,

this option doesn’t imply an implicit check-state in contrast to keep-state.

recv | xmit | via {ifX | ifmask | table(name[,value]) | ipno | any}

Matches packets received, transmitted or going through, respectively, the interface specified by

exact name (ifX), by device mask (ifmask), by IP address, or through some interface.

Interface name may be matched against ifmask with fnmatch(3) according to the rules used by

the shell (f.e. tun*). See also the EXAMPLES section.

Table name may be used to match interface by its kernel ifindex. See the LOOKUP TABLES

section below for more information on lookup tables.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

The via keyword causes the interface to always be checked. If recv or xmit is used instead of

via, then only the receive or transmit interface (respectively) is checked. By specifying both, it is

possible to match packets based on both receive and transmit interface, e.g.:

ipfw add deny ip from any to any out recv ed0 xmit ed1

The recv interface can be tested on either incoming or outgoing packets, while the xmit interface

can only be tested on outgoing packets. So out is required (and in is invalid) whenever xmit is

used.

A packet might not have a receive or transmit interface: packets originating from the local host

have no receive interface, while packets destined for the local host have no transmit interface.

set-limit {src-addr | src-port | dst-addr | dst-port} N

Works like limit but does not have an implicit check-state attached to it.

setup Matches TCP packets that have the SYN bit set but no ACK bit. This is the short form of

"tcpflags syn,!ack".

sockarg
Matches packets that are associated to a local socket and for which the SO_USER_COOKIE

socket option has been set to a non-zero value. As a side effect, the value of the option is made

available as tablearg value, which in turn can be used as skipto or pipe number.

src-ip ip-address

Matches IPv4 packets whose source IP is one of the address(es) specified as an argument.

src-ip6 ip6-address

Matches IPv6 packets whose source IP is one of the address(es) specified as an argument.

src-port ports

Matches IP packets whose source port is one of the port(s) specified as argument.

tagged tag-list

Matches packets whose tags are included in tag-list, which is either a single value or a list of

values or ranges specified in the same way as ports. Tags can be applied to the packet using tag
rule action parameter (see it’s description for details on tags).

mark value[:bitmask] | tablearg[:bitmask]

Matches packets whose mark is equal to value with optional bitmask applied to it. tablearg can

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

also be used instead of an explicit value to match a value supplied by the last table lookup.

Both value and bitmask can be entered as decimal or hexadecimal (if prefixed by 0x), and they

are always printed as hexadecimal.

tcpack ack

TCP packets only. Match if the TCP header acknowledgment number field is set to ack.

tcpdatalen tcpdatalen-list

Matches TCP packets whose length of TCP data is tcpdatalen-list, which is either a single value

or a list of values or ranges specified in the same way as ports.

tcpflags spec

TCP packets only. Match if the TCP header contains the comma separated list of flags specified

in spec. The supported TCP flags are:

fin, syn, rst, psh, ack and urg. The absence of a particular flag may be denoted with a ‘!’. A rule

which contains a tcpflags specification can never match a fragmented packet which has a non-

zero offset. See the frag option for details on matching fragmented packets.

tcpmss tcpmss-list

Matches TCP packets whose MSS (maximum segment size) value is set to tcpmss-list, which is

either a single value or a list of values or ranges specified in the same way as ports.

tcpseq seq

TCP packets only. Match if the TCP header sequence number field is set to seq.

tcpwin tcpwin-list

Matches TCP packets whose header window field is set to tcpwin-list, which is either a single

value or a list of values or ranges specified in the same way as ports.

tcpoptions spec

TCP packets only. Match if the TCP header contains the comma separated list of options

specified in spec. The supported TCP options are:

mss (maximum segment size), window (tcp window advertisement), sack (selective ack), ts
(rfc1323 timestamp) and cc (rfc1644 t/tcp connection count). The absence of a particular option

may be denoted with a ‘!’.

uid user

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Match all TCP or UDP packets sent by or received for a user. A user may be matched by name

or identification number.

verrevpath
For incoming packets, a routing table lookup is done on the packet’s source address. If the

interface on which the packet entered the system matches the outgoing interface for the route, the

packet matches. If the interfaces do not match up, the packet does not match. All outgoing

packets or packets with no incoming interface match.

The name and functionality of the option is intentionally similar to the Cisco IOS command:

ip verify unicast reverse-path

This option can be used to make anti-spoofing rules to reject all packets with source addresses

not from this interface. See also the option antispoof.

versrcreach
For incoming packets, a routing table lookup is done on the packet’s source address. If a route to

the source address exists, but not the default route or a blackhole/reject route, the packet

matches. Otherwise, the packet does not match. All outgoing packets match.

The name and functionality of the option is intentionally similar to the Cisco IOS command:

ip verify unicast source reachable-via any

This option can be used to make anti-spoofing rules to reject all packets whose source address is

unreachable.

antispoof
For incoming packets, the packet’s source address is checked if it belongs to a directly connected

network. If the network is directly connected, then the interface the packet came on in is

compared to the interface the network is connected to. When incoming interface and directly

connected interface are not the same, the packet does not match. Otherwise, the packet does

match. All outgoing packets match.

This option can be used to make anti-spoofing rules to reject all packets that pretend to be from a

directly connected network but do not come in through that interface. This option is similar to

but more restricted than verrevpath because it engages only on packets with source addresses of

directly connected networks instead of all source addresses.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

LOOKUP TABLES
Lookup tables are useful to handle large sparse sets of addresses or other search keys (e.g., ports, jail

IDs, interface names). In the rest of this section we will use the term ‘‘key’’. Table name needs to

match the following spec: table-name. Tables with the same name can be created in different sets.

However, rule links to the tables in set 0 by default. This behavior can be controlled by

net.inet.ip.fw.tables_sets variable. See the SETS OF RULES section for more information. There may

be up to 65535 different lookup tables.

The following table types are supported:

table-type: addr | iface | number | flow | mac

table-key: addr[/masklen] | iface-name | number | flow-spec

flow-spec: flow-field[,flow-spec]

flow-field: src-ip | proto | src-port | dst-ip | dst-port

addr Matches IPv4 or IPv6 address. Each entry is represented by an addr[/masklen] and will match all

addresses with base addr (specified as an IPv4/IPv6 address, or a hostname) and mask width of

masklen bits. If masklen is not specified, it defaults to 32 for IPv4 and 128 for IPv6. When

looking up an IP address in a table, the most specific entry will match.

iface Matches interface names. Each entry is represented by string treated as interface name.

Wildcards are not supported.

number
Matches protocol ports, uids/gids or jail IDs. Each entry is represented by 32-bit unsigned

integer. Ranges are not supported.

flow Matches packet fields specified by flow type suboptions with table entries.

mac Matches MAC address. Each entry is represented by an addr[/masklen] and will match all

addresses with base addr and mask width of masklen bits. If masklen is not specified, it defaults

to 48. When looking up an MAC address in a table, the most specific entry will match.

Tables require explicit creation via create before use.

The following creation options are supported:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

create-options: create-option | create-options

create-option: type table-type | valtype value-mask | algo algo-desc |

limit number | locked | missing | or-flush

type Table key type.

valtype
Table value mask.

algo Table algorithm to use (see below).

limit Maximum number of items that may be inserted into table.

locked
Restrict any table modifications.

missing
Do not fail if table already exists and has exactly same options as new one.

or-flush
Flush existing table with same name instead of returning error. Implies missing so existing table

must be compatible with new one.

Some of these options may be modified later via modify keyword. The following options can be

changed:

modify-options: modify-option | modify-options

modify-option: limit number

limit Alter maximum number of items that may be inserted into table.

Additionally, table can be locked or unlocked using lock or unlock commands.

Tables of the same type can be swapped with each other using swap name command. Swap may fail if

tables limits are set and data exchange would result in limits hit. Operation is performed atomically.

One or more entries can be added to a table at once using add command. Addition of all items are

performed atomically. By default, error in addition of one entry does not influence addition of other

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

entries. However, non-zero error code is returned in that case. Special atomic keyword may be

specified before add to indicate all-or-none add request.

One or more entries can be removed from a table at once using delete command. By default, error in

removal of one entry does not influence removing of other entries. However, non-zero error code is

returned in that case.

It may be possible to check what entry will be found on particular table-key using lookup table-key

command. This functionality is optional and may be unsupported in some algorithms.

The following operations can be performed on one or all tables:

list List all entries.

flush Removes all entries.

info Shows generic table information.

detail Shows generic table information and algo-specific data.

The following lookup algorithms are supported:

algo-desc: algo-name | algo-name algo-data

algo-name: addr: radix | addr: hash | iface: array | number: array | flow: hash | mac: radix

addr: radix
Separate Radix trees for IPv4 and IPv6, the same way as the routing table (see route(4)). Default

choice for addr type.

addr:hash
Separate auto-growing hashes for IPv4 and IPv6. Accepts entries with the same mask length

specified initially via addr:hash masks=/v4,/v6 algorithm creation options. Assume /32 and /128

masks by default. Search removes host bits (according to mask) from supplied address and

checks resulting key in appropriate hash. Mostly optimized for /64 and byte-ranged IPv6 masks.

iface:array
Array storing sorted indexes for entries which are presented in the system. Optimized for very

fast lookup.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

number:array
Array storing sorted u32 numbers.

flow:hash
Auto-growing hash storing flow entries. Search calculates hash on required packet fields and

searches for matching entries in selected bucket.

mac: radix
Radix tree for MAC address

The tablearg feature provides the ability to use a value, looked up in the table, as the argument for a rule

action, action parameter or rule option. This can significantly reduce number of rules in some

configurations. If two tables are used in a rule, the result of the second (destination) is used.

Each record may hold one or more values according to value-mask. This mask is set on table creation

via valtype option. The following value types are supported:

value-mask: value-type[,value-mask]

value-type: skipto | pipe | fib | nat | dscp | tag | divert |

netgraph | limit | ipv4 | ipv6 | mark

skipto rule number to jump to.

pipe Pipe number to use.

fib fib number to match/set.

nat nat number to jump to.

dscp dscp value to match/set.

tag tag number to match/set.

divert port number to divert traffic to.

netgraph
hook number to move packet to.

limit maximum number of connections.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

ipv4 IPv4 nexthop to fwd packets to.

ipv6 IPv6 nexthop to fwd packets to.

mark mark value to match/set.

The tablearg argument can be used with the following actions: nat, pipe, queue, divert, tee, netgraph,
ngtee, fwd, skipto, setfib, setmark, action parameters: tag, untag, rule options: limit, tagged, mark.

When used with the skipto action, the user should be aware that the code will walk the ruleset up to a

rule equal to, or past, the given number.

See the EXAMPLES Section for example usage of tables and the tablearg keyword.

SETS OF RULES
Each rule or table belongs to one of 32 different sets , numbered 0 to 31. Set 31 is reserved for the

default rule.

By default, rules or tables are put in set 0, unless you use the set N attribute when adding a new rule or

table. Sets can be individually and atomically enabled or disabled, so this mechanism permits an easy

way to store multiple configurations of the firewall and quickly (and atomically) switch between them.

By default, tables from set 0 are referenced when adding rule with table opcodes regardless of rule set.

This behavior can be changed by setting net.inet.ip.fw.tables_sets variable to 1. Rule’s set will then be

used for table references.

The command to enable/disable sets is

ipfw set [disable number ...] [enable number ...]

where multiple enable or disable sections can be specified. Command execution is atomic on all the sets

specified in the command. By default, all sets are enabled.

When you disable a set, its rules behave as if they do not exist in the firewall configuration, with only

one exception:

dynamic rules created from a rule before it had been disabled will still be active until they expire. In

order to delete dynamic rules you have to explicitly delete the parent rule which generated them.

The set number of rules can be changed with the command

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

ipfw set move {rule rule-number | old-set} to new-set

Also, you can atomically swap two rulesets with the command

ipfw set swap first-set second-set

See the EXAMPLES Section on some possible uses of sets of rules.

STATEFUL FIREWALL
Stateful operation is a way for the firewall to dynamically create rules for specific flows when packets

that match a given pattern are detected. Support for stateful operation comes through the check-state,

keep-state, record-state, limit and set-limit options of rules.

Dynamic rules are created when a packet matches a keep-state, record-state, limit or set-limit rule,

causing the creation of a dynamic rule which will match all and only packets with a given protocol

between a src-ip/src-port dst-ip/dst-port pair of addresses (src and dst are used here only to denote the

initial match addresses, but they are completely equivalent afterwards). Rules created by keep-state
option also have a :flowname taken from it. This name is used in matching together with addresses,

ports and protocol. Dynamic rules will be checked at the first check-state, keep-state or limit
occurrence, and the action performed upon a match will be the same as in the parent rule.

Note that no additional attributes other than protocol and IP addresses and ports and :flowname are

checked on dynamic rules.

The typical use of dynamic rules is to keep a closed firewall configuration, but let the first TCP SYN

packet from the inside network install a dynamic rule for the flow so that packets belonging to that

session will be allowed through the firewall:

ipfw add check-state :OUTBOUND

ipfw add allow tcp from my-subnet to any setup keep-state :OUTBOUND

ipfw add deny tcp from any to any

A similar approach can be used for UDP, where an UDP packet coming from the inside will install a

dynamic rule to let the response through the firewall:

ipfw add check-state :OUTBOUND

ipfw add allow udp from my-subnet to any keep-state :OUTBOUND

ipfw add deny udp from any to any

Dynamic rules expire after some time, which depends on the status of the flow and the setting of some

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

sysctl variables. See Section SYSCTL VARIABLES for more details. For TCP sessions, dynamic rules

can be instructed to periodically send keepalive packets to refresh the state of the rule when it is about to

expire.

See Section EXAMPLES for more examples on how to use dynamic rules.

TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
ipfw is also the user interface for the dummynet traffic shaper, packet scheduler and network emulator, a

subsystem that can artificially queue, delay or drop packets emulating the behaviour of certain network

links or queueing systems.

dummynet operates by first using the firewall to select packets using any match pattern that can be used

in ipfw rules. Matching packets are then passed to either of two different objects, which implement the

traffic regulation:

pipe A pipe emulates a link with given bandwidth and propagation delay, driven by a FIFO

scheduler and a single queue with programmable queue size and packet loss rate. Packets

are appended to the queue as they come out from ipfw, and then transferred in FIFO order to

the link at the desired rate.

queueA queue is an abstraction used to implement packet scheduling using one of several packet

scheduling algorithms. Packets sent to a queue are first grouped into flows according to a

mask on the 5-tuple. Flows are then passed to the scheduler associated to the queue, and

each flow uses scheduling parameters (weight and others) as configured in the queue itself.

A scheduler in turn is connected to an emulated link, and arbitrates the link’s bandwidth

among backlogged flows according to weights and to the features of the scheduling

algorithm in use.

In practice, pipes can be used to set hard limits to the bandwidth that a flow can use, whereas queues can

be used to determine how different flows share the available bandwidth.

A graphical representation of the binding of queues, flows, schedulers and links is below.

(flow_mask|sched_mask) sched_mask

+---------+ weight Wx +-------------+

| |->-[flow]-->--| |-+

-->--| QUEUE x | ... | | |

| |->-[flow]-->--| SCHEDuler N | |

+---------+ | | |

... | +--[LINK N]-->--

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

+---------+ weight Wy | | +--[LINK N]-->--

| |->-[flow]-->--| | |

-->--| QUEUE y | ... | | |

| |->-[flow]-->--| | |

+---------+ +-------------+ |

+-------------+

It is important to understand the role of the SCHED_MASK and FLOW_MASK, which are configured

through the commands

ipfw sched N config mask SCHED_MASK ...

and

ipfw queue X config mask FLOW_MASK

The SCHED_MASK is used to assign flows to one or more scheduler instances, one for each value of

the packet’s 5-tuple after applying SCHED_MASK. As an example, using ‘‘src-ip 0xffffff00’’ creates

one instance for each /24 destination subnet.

The FLOW_MASK, together with the SCHED_MASK, is used to split packets into flows. As an

example, using ‘‘src-ip 0x000000ff’’ together with the previous SCHED_MASK makes a flow for each

individual source address. In turn, flows for each /24 subnet will be sent to the same scheduler instance.

The above diagram holds even for the pipe case, with the only restriction that a pipe only supports a

SCHED_MASK, and forces the use of a FIFO scheduler (these are for backward compatibility reasons;

in fact, internally, a dummynet’s pipe is implemented exactly as above).

There are two modes of dummynet operation: "normal" and "fast". The "normal" mode tries to emulate

a real link: the dummynet scheduler ensures that the packet will not leave the pipe faster than it would

on the real link with a given bandwidth. The "fast" mode allows certain packets to bypass the

dummynet scheduler (if packet flow does not exceed pipe’s bandwidth). This is the reason why the

"fast" mode requires less CPU cycles per packet (on average) and packet latency can be significantly

lower in comparison to a real link with the same bandwidth. The default mode is "normal". The "fast"

mode can be enabled by setting the net.inet.ip.dummynet.io_fast sysctl(8) variable to a non-zero value.

PIPE, QUEUE AND SCHEDULER CONFIGURATION
The pipe, queue and scheduler configuration commands are the following:

pipe number config pipe-configuration

queue number config queue-configuration

sched number config sched-configuration

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

The following parameters can be configured for a pipe:

bw bandwidth | device

Bandwidth, measured in [K|M|G]{bit/s|Byte/s}.

A value of 0 (default) means unlimited bandwidth. The unit must immediately follow the

number, as in

dnctl pipe 1 config bw 300Kbit/s

If a device name is specified instead of a numeric value, as in

dnctl pipe 1 config bw tun0

then the transmit clock is supplied by the specified device. At the moment only the tun(4) device

supports this functionality, for use in conjunction with ppp(8).

delay ms-delay

Propagation delay, measured in milliseconds. The value is rounded to the next multiple of the

clock tick (typically 10ms, but it is a good practice to run kernels with "options HZ=1000" to

reduce the granularity to 1ms or less). The default value is 0, meaning no delay.

burst size

If the data to be sent exceeds the pipe’s bandwidth limit (and the pipe was previously idle), up to

size bytes of data are allowed to bypass the dummynet scheduler, and will be sent as fast as the

physical link allows. Any additional data will be transmitted at the rate specified by the pipe
bandwidth. The burst size depends on how long the pipe has been idle; the effective burst size is

calculated as follows: MAX(size , bw * pipe_idle_time).

profile filename

A file specifying the additional overhead incurred in the transmission of a packet on the link.

Some link types introduce extra delays in the transmission of a packet, e.g., because of MAC

level framing, contention on the use of the channel, MAC level retransmissions and so on. From

our point of view, the channel is effectively unavailable for this extra time, which is constant or

variable depending on the link type. Additionally, packets may be dropped after this time (e.g.,

on a wireless link after too many retransmissions). We can model the additional delay with an

empirical curve that represents its distribution.

cumulative probability

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

1.0 ^

|

L +-- loss-level x

| ******

| *

| *****

| *

| **

| *

+-------*------------------->

delay

The empirical curve may have both vertical and horizontal lines. Vertical lines represent

constant delay for a range of probabilities. Horizontal lines correspond to a discontinuity in the

delay distribution: the pipe will use the largest delay for a given probability.

The file format is the following, with whitespace acting as a separator and ’#’ indicating the

beginning a comment:

name identifier

optional name (listed by "dnctl pipe show") to identify the delay distribution;

bw value

the bandwidth used for the pipe. If not specified here, it must be present explicitly as a

configuration parameter for the pipe;

loss-level L

the probability above which packets are lost. (0.0 <= L <= 1.0, default 1.0 i.e., no loss);

samples N

the number of samples used in the internal representation of the curve (2..1024; default

100);

delay prob | prob delay
One of these two lines is mandatory and defines the format of the following lines with

data points.

XXX YYY

2 or more lines representing points in the curve, with either delay or probability first,

according to the chosen format. The unit for delay is milliseconds. Data points do not

need to be sorted. Also, the number of actual lines can be different from the value of the

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

"samples" parameter: ipfw utility will sort and interpolate the curve as needed.

Example of a profile file:

name bla_bla_bla

samples 100

loss-level 0.86

prob delay

0 200 # minimum overhead is 200ms

0.5 200

0.5 300

0.8 1000

0.9 1300

1 1300

#configuration file end

The following parameters can be configured for a queue:

pipe pipe_nr

Connects a queue to the specified pipe. Multiple queues (with the same or different weights) can

be connected to the same pipe, which specifies the aggregate rate for the set of queues.

weight weight

Specifies the weight to be used for flows matching this queue. The weight must be in the range

1..100, and defaults to 1.

The following case-insensitive parameters can be configured for a scheduler:

type {fifo | wf2q+ | rr | qfq | fq_codel | fq_pie}

specifies the scheduling algorithm to use.

fifo is just a FIFO scheduler (which means that all packets are stored in the same queue as

they arrive to the scheduler). FIFO has O(1) per-packet time complexity, with very low

constants (estimate 60-80ns on a 2GHz desktop machine) but gives no service guarantees.

wf2q+
implements the WF2Q+ algorithm, which is a Weighted Fair Queueing algorithm which

permits flows to share bandwidth according to their weights. Note that weights are not

priorities; even a flow with a minuscule weight will never starve. WF2Q+ has O(log N)

per-packet processing cost, where N is the number of flows, and is the default algorithm

used by previous versions dummynet’s queues.

rr implements the Deficit Round Robin algorithm, which has O(1) processing costs

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

(roughly, 100-150ns per packet) and permits bandwidth allocation according to weights,

but with poor service guarantees.

qfq implements the QFQ algorithm, which is a very fast variant of WF2Q+, with similar

service guarantees and O(1) processing costs (roughly, 200-250ns per packet).

fq_codel
implements the FQ-CoDel (FlowQueue-CoDel) scheduler/AQM algorithm, which uses a

modified Deficit Round Robin scheduler to manage two lists of sub-queues (old sub-

queues and new sub-queues) for providing brief periods of priority to lightweight or short

burst flows. By default, the total number of sub-queues is 1024. FQ-CoDel’s internal,

dynamically created sub-queues are controlled by separate instances of CoDel AQM.

fq_pie
implements the FQ-PIE (FlowQueue-PIE) scheduler/AQM algorithm, which similar to

fq_codel but uses per sub-queue PIE AQM instance to control the queue delay.

fq_codel inherits AQM parameters and options from codel (see below), and fq_pie inherits AQM

parameters and options from pie (see below). Additionally, both of fq_codel and fq_pie have

shared scheduler parameters which are:

quantum
m specifies the quantum (credit) of the scheduler. m is the number of bytes a queue can

serve before being moved to the tail of old queues list. The default is 1514 bytes, and the

maximum acceptable value is 9000 bytes.

limit m specifies the hard size limit (in unit of packets) of all queues managed by an instance

of the scheduler. The default value of m is 10240 packets, and the maximum acceptable

value is 20480 packets.

flows m specifies the total number of flow queues (sub-queues) that fq_* creates and manages.

By default, 1024 sub-queues are created when an instance of the fq_{codel/pie} scheduler

is created. The maximum acceptable value is 65536.

Note that any token after fq_codel or fq_pie is considered a parameter for fq_{codel/pie}. So,

ensure all scheduler configuration options not related to fq_{codel/pie} are written before

fq_codel/fq_pie tokens.

In addition to the type, all parameters allowed for a pipe can also be specified for a scheduler.

Finally, the following parameters can be configured for both pipes and queues:

buckets hash-table-size

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Specifies the size of the hash table used for storing the various queues. Default value is 64

controlled by the sysctl(8) variable net.inet.ip.dummynet.hash_size, allowed range is 16 to

65536.

mask mask-specifier

Packets sent to a given pipe or queue by an ipfw rule can be further classified into multiple

flows, each of which is then sent to a different dynamic pipe or queue. A flow identifier is

constructed by masking the IP addresses, ports and protocol types as specified with the mask
options in the configuration of the pipe or queue. For each different flow identifier, a new pipe

or queue is created with the same parameters as the original object, and matching packets are

sent to it.

Thus, when dynamic pipes are used, each flow will get the same bandwidth as defined by the

pipe, whereas when dynamic queues are used, each flow will share the parent’s pipe bandwidth

evenly with other flows generated by the same queue (note that other queues with different

weights might be connected to the same pipe).

Available mask specifiers are a combination of one or more of the following:

dst-ip mask, dst-ip6 mask, src-ip mask, src-ip6 mask, dst-port mask, src-port mask, flow-id
mask, proto mask or all,

where the latter means all bits in all fields are significant.

noerror
When a packet is dropped by a dummynet queue or pipe, the error is normally reported to the

caller routine in the kernel, in the same way as it happens when a device queue fills up. Setting

this option reports the packet as successfully delivered, which can be needed for some

experimental setups where you want to simulate loss or congestion at a remote router.

plr packet-loss-rate

Packet loss rate. Argument packet-loss-rate is a floating-point number between 0 and 1, with 0

meaning no loss, 1 meaning 100% loss. The loss rate is internally represented on 31 bits.

queue {slots | sizeKbytes}

Queue size, in slots or KBytes. Default value is 50 slots, which is the typical queue size for

Ethernet devices. Note that for slow speed links you should keep the queue size short or your

traffic might be affected by a significant queueing delay. E.g., 50 max-sized Ethernet packets

(1500 bytes) mean 600Kbit or 20s of queue on a 30Kbit/s pipe. Even worse effects can result if

you get packets from an interface with a much larger MTU, e.g. the loopback interface with its

16KB packets. The sysctl(8) variables net.inet.ip.dummynet.pipe_byte_limit and

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.dummynet.pipe_slot_limit control the maximum lengths that can be specified.

red | gred w_q/min_th/max_th/max_p

[ecn] Make use of the RED (Random Early Detection) queue management algorithm. w_q and

max_p are floating point numbers between 0 and 1 (inclusive), while min_th and max_th are

integer numbers specifying thresholds for queue management (thresholds are computed in bytes

if the queue has been defined in bytes, in slots otherwise). The two parameters can also be of

the same value if needed. The dummynet also supports the gentle RED variant (gred) and ECN

(Explicit Congestion Notification) as optional. Three sysctl(8) variables can be used to control

the RED behaviour:

net.inet.ip.dummynet.red_lookup_depth

specifies the accuracy in computing the average queue when the link is idle (defaults to

256, must be greater than zero)

net.inet.ip.dummynet.red_avg_pkt_size

specifies the expected average packet size (defaults to 512, must be greater than zero)

net.inet.ip.dummynet.red_max_pkt_size

specifies the expected maximum packet size, only used when queue thresholds are in

bytes (defaults to 1500, must be greater than zero).

codel [target time] [interval time] [ecn | noecn]

Make use of the CoDel (Controlled-Delay) queue management algorithm. time is interpreted as

milliseconds by default but seconds (s), milliseconds (ms) or microseconds (us) can be specified

instead. CoDel drops or marks (ECN) packets depending on packet sojourn time in the queue.

target time (5ms by default) is the minimum acceptable persistent queue delay that CoDel

allows. CoDel does not drop packets directly after packets sojourn time becomes higher than

target time but waits for interval time (100ms default) before dropping. interval time should be

set to maximum RTT for all expected connections. ecn enables (disabled by default) packet

marking (instead of dropping) for ECN-enabled TCP flows when queue delay becomes high.

Note that any token after codel is considered a parameter for CoDel. So, ensure all pipe/queue

configuration options are written before codel token.

The sysctl(8) variables net.inet.ip.dummynet.codel.target and

net.inet.ip.dummynet.codel.interval can be used to set CoDel default parameters.

pie [target time] [tupdate time] [alpha n] [beta n] [max_burst time] [max_ecnth n] [ecn | noecn] [capdrop
| nocapdrop] [drand | nodrand] [onoff] [dre | ts]

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Make use of the PIE (Proportional Integral controller Enhanced) queue management algorithm.

PIE drops or marks packets depending on a calculated drop probability during en-queue

process, with the aim of achieving high throughput while keeping queue delay low. At regular

time intervals of tupdate time (15ms by default) a background process (re)calculates the

probability based on queue delay deviations from target time (15ms by default) and queue delay

trends. PIE approximates current queue delay by using a departure rate estimation method, or

(optionally) by using a packet timestamp method similar to CoDel. time is interpreted as

milliseconds by default but seconds (s), milliseconds (ms) or microseconds (us) can be specified

instead. The other PIE parameters and options are as follows:

alpha n

n is a floating point number between 0 and 7 which specifies the weight of queue delay

deviations that is used in drop probability calculation. 0.125 is the default.

beta n n is a floating point number between 0 and 7 which specifies is the weight of queue

delay trend that is used in drop probability calculation. 1.25 is the default.

max_burst time

The maximum period of time that PIE does not drop/mark packets. 150ms is the default

and 10s is the maximum value.

max_ecnth n

Even when ECN is enabled, PIE drops packets instead of marking them when drop

probability becomes higher than ECN probability threshold max_ecnth n , the default is

0.1 (i.e 10%) and 1 is the maximum value.

ecn | noecn
enable or disable ECN marking for ECN-enabled TCP flows. Disabled by default.

capdrop | nocapdrop
enable or disable cap drop adjustment. Cap drop adjustment is enabled by default.

drand | nodrand
enable or disable drop probability de-randomisation. De-randomisation eliminates the

problem of dropping packets too close or too far. De-randomisation is enabled by

default.

onoff enable turning PIE on and off depending on queue load. If this option is enabled, PIE

turns on when over 1/3 of queue becomes full. This option is disabled by default.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

dre | ts
Calculate queue delay using departure rate estimation dre or timestamps ts. dre is used

by default.

Note that any token after pie is considered a parameter for PIE. So ensure all pipe/queue the

configuration options are written before pie token. sysctl(8) variables can be used to control the

pie default parameters. See the SYSCTL VARIABLES section for more details.

When used with IPv6 data, dummynet currently has several limitations. Information necessary to route

link-local packets to an interface is not available after processing by dummynet so those packets are

dropped in the output path. Care should be taken to ensure that link-local packets are not passed to

dummynet.

CHECKLIST
Here are some important points to consider when designing your rules:

+o Remember that you filter both packets going in and out. Most connections need packets going in

both directions.

+o Remember to test very carefully. It is a good idea to be near the console when doing this. If you

cannot be near the console, use an auto-recovery script such as the one in

/usr/share/examples/ipfw/change_rules.sh.

+o Do not forget the loopback interface.

FINE POINTS
+o There are circumstances where fragmented datagrams are unconditionally dropped. TCP packets are

dropped if they do not contain at least 20 bytes of TCP header, UDP packets are dropped if they do

not contain a full 8 byte UDP header, and ICMP packets are dropped if they do not contain 4 bytes

of ICMP header, enough to specify the ICMP type, code, and checksum. These packets are simply

logged as "pullup failed" since there may not be enough good data in the packet to produce a

meaningful log entry.

+o Another type of packet is unconditionally dropped, a TCP packet with a fragment offset of one. This

is a valid packet, but it only has one use, to try to circumvent firewalls. When logging is enabled,

these packets are reported as being dropped by rule -1.

+o If you are logged in over a network, loading the kld(4) version of ipfw is probably not as

straightforward as you would think. The following command line is recommended:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

kldload ipfw && \

ipfw add 32000 allow ip from any to any

Along the same lines, doing an

ipfw flush

in similar surroundings is also a bad idea.

+o The ipfw filter list may not be modified if the system security level is set to 3 or higher (see init(8)

for information on system security levels).

PACKET DIVERSION
A divert(4) socket bound to the specified port will receive all packets diverted to that port. If no socket

is bound to the destination port, or if the divert module is not loaded, or if the kernel was not compiled

with divert socket support, the packets are dropped.

NETWORK ADDRESS TRANSLATION (NAT)
ipfw support in-kernel NAT using the kernel version of libalias(3). The kernel module ipfw_nat should

be loaded or kernel should have options IPFIREWALL_NAT to be able use NAT.

The nat configuration command is the following:

nat nat_number config nat-configuration

The following parameters can be configured:

ip ip_address

Define an ip address to use for aliasing.

if nic Use ip address of NIC for aliasing, dynamically changing it if NIC’s ip address changes.

log Enable logging on this nat instance.

deny_in
Deny any incoming connection from outside world.

same_ports
Try to leave the alias port numbers unchanged from the actual local port numbers.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

unreg_only
Traffic on the local network not originating from a RFC 1918 unregistered address spaces will be

ignored.

unreg_cgn
Like unreg_only, but includes the RFC 6598 (Carrier Grade NAT) address range.

reset Reset table of the packet aliasing engine on address change.

reverse
Reverse the way libalias handles aliasing.

proxy_only
Obey transparent proxy rules only, packet aliasing is not performed.

skip_global
Skip instance in case of global state lookup (see below).

port_range lower-upper

Set the aliasing ports between the ranges given. Upper port has to be greater than lower.

Some special values can be supplied instead of nat_number in nat rule actions:

global Looks up translation state in all configured nat instances. If an entry is found, packet is aliased

according to that entry. If no entry was found in any of the instances, packet is passed

unchanged, and no new entry will be created. See section MULTIPLE INSTANCES in natd(8)

for more information.

tablearg
Uses argument supplied in lookup table. See LOOKUP TABLES section below for more

information on lookup tables.

To let the packet continue after being (de)aliased, set the sysctl variable net.inet.ip.fw.one_pass to 0.

For more information about aliasing modes, refer to libalias(3). See Section EXAMPLES for some

examples of nat usage.

REDIRECT AND LSNAT SUPPORT IN IPFW
Redirect and LSNAT support follow closely the syntax used in natd(8). See Section EXAMPLES for

some examples on how to do redirect and lsnat.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

SCTP NAT SUPPORT
SCTP nat can be configured in a similar manner to TCP through the ipfw command line tool. The main

difference is that sctp nat does not do port translation. Since the local and global side ports will be the

same, there is no need to specify both. Ports are redirected as follows:

nat nat_number config if nic redirect_port sctp ip_address [,addr_list] {[port | port-port] [,ports]}

Most sctp nat configuration can be done in real-time through the sysctl(8) interface. All may be changed

dynamically, though the hash_table size will only change for new nat instances. See SYSCTL

VARIABLES for more info.

IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
Stateful translation
ipfw supports in-kernel IPv6/IPv4 network address and protocol translation. Stateful NAT64 translation

allows IPv6-only clients to contact IPv4 servers using unicast TCP, UDP or ICMP protocols. One or

more IPv4 addresses assigned to a stateful NAT64 translator are shared among several IPv6-only clients.

When stateful NAT64 is used in conjunction with DNS64, no changes are usually required in the IPv6

client or the IPv4 server. The kernel module ipfw_nat64 should be loaded or kernel should have options
IPFIREWALL_NAT64 to be able use stateful NAT64 translator.

Stateful NAT64 uses a bunch of memory for several types of objects. When IPv6 client initiates

connection, NAT64 translator creates a host entry in the states table. Each host entry uses preallocated

IPv4 alias entry. Each alias entry has a number of ports group entries allocated on demand. Ports group

entries contains connection state entries. There are several options to control limits and lifetime for

these objects.

NAT64 translator follows RFC7915 when does ICMPv6/ICMP translation, unsupported message types

will be silently dropped. IPv6 needs several ICMPv6 message types to be explicitly allowed for correct

operation. Make sure that ND6 neighbor solicitation (ICMPv6 type 135) and neighbor advertisement

(ICMPv6 type 136) messages will not be handled by translation rules.

After translation NAT64 translator by default sends packets through corresponding netisr queue. Thus

translator host should be configured as IPv4 and IPv6 router. Also this means, that a packet is handled

by firewall twice. First time an original packet is handled and consumed by translator, and then it is

handled again as translated packet. This behavior can be changed by sysctl variable

net.inet.ip.fw.nat64_direct_output. Also translated packet can be tagged using tag rule action, and then

matched by tagged opcode to avoid loops and extra overhead.

The stateful NAT64 configuration command is the following:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

nat64lsn name create create-options

The following parameters can be configured:

prefix4 ipv4_prefix/plen

The IPv4 prefix with mask defines the pool of IPv4 addresses used as source address after

translation. Stateful NAT64 module translates IPv6 source address of client to one IPv4 address

from this pool. Note that incoming IPv4 packets that don’t have corresponding state entry in the

states table will be dropped by translator. Make sure that translation rules handle packets,

destined to configured prefix.

prefix6 ipv6_prefix/length

The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent IPv4

addresses. This IPv6 prefix should be configured in DNS64. The translator implementation

follows RFC6052, that restricts the length of prefixes to one of following: 32, 40, 48, 56, 64, or

96. The Well-Known IPv6 Prefix 64:ff9b:: must be 96 bits long. The special ::/length prefix can

be used to handle several IPv6 prefixes with one NAT64 instance. The NAT64 instance will

determine a destination IPv4 address from prefix length.

states_chunks number

The number of states chunks in single ports group. Each ports group by default can keep 64 state

entries in single chunk. The above value affects the maximum number of states that can be

associated with single IPv4 alias address and port. The value must be power of 2, and up to 128.

host_del_age seconds

The number of seconds until the host entry for a IPv6 client will be deleted and all its resources

will be released due to inactivity. Default value is 3600.

pg_del_age seconds

The number of seconds until a ports group with unused state entries will be released. Default

value is 900.

tcp_syn_age seconds

The number of seconds while a state entry for TCP connection with only SYN sent will be kept.

If TCP connection establishing will not be finished, state entry will be deleted. Default value is

10.

tcp_est_age seconds

The number of seconds while a state entry for established TCP connection will be kept. Default

value is 7200.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

tcp_close_age seconds

The number of seconds while a state entry for closed TCP connection will be kept. Keeping

state entries for closed connections is needed, because IPv4 servers typically keep closed

connections in a TIME_WAIT state for a several minutes. Since translator’s IPv4 addresses are

shared among all IPv6 clients, new connections from the same addresses and ports may be

rejected by server, because these connections are still in a TIME_WAIT state. Keeping them in

translator’s state table protects from such rejects. Default value is 180.

udp_age seconds

The number of seconds while translator keeps state entry in a waiting for reply to the sent UDP

datagram. Default value is 120.

icmp_age seconds

The number of seconds while translator keeps state entry in a waiting for reply to the sent ICMP

message. Default value is 60.

log Turn on logging of all handled packets via BPF through ipfwlog0 interface. ipfwlog0 is a pseudo

interface and can be created after a boot manually with ifconfig command. Note that it has

different purpose than ipfw0 interface. Translators sends to BPF an additional information with

each packet. With tcpdump you are able to see each handled packet before and after translation.

-log Turn off logging of all handled packets via BPF.

allow_private
Turn on processing private IPv4 addresses. By default IPv6 packets with destinations mapped to

private address ranges defined by RFC1918 are not processed.

-allow_private
Turn off private address handling in nat64 instance.

To inspect a states table of stateful NAT64 the following command can be used:

nat64lsn name show states

Stateless NAT64 translator doesn’t use a states table for translation and converts IPv4 addresses to IPv6

and vice versa solely based on the mappings taken from configured lookup tables. Since a states table

doesn’t used by stateless translator, it can be configured to pass IPv4 clients to IPv6-only servers.

The stateless NAT64 configuration command is the following:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

nat64stl name create create-options

The following parameters can be configured:

prefix6 ipv6_prefix/length

The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent IPv4

addresses. This IPv6 prefix should be configured in DNS64.

table4 table46

The lookup table table46 contains mapping how IPv4 addresses should be translated to IPv6

addresses.

table6 table64

The lookup table table64 contains mapping how IPv6 addresses should be translated to IPv4

addresses.

log Turn on logging of all handled packets via BPF through ipfwlog0 interface.

-log Turn off logging of all handled packets via BPF.

allow_private
Turn on processing private IPv4 addresses. By default IPv6 packets with destinations mapped to

private address ranges defined by RFC1918 are not processed.

-allow_private
Turn off private address handling in nat64 instance.

Note that the behavior of stateless translator with respect to not matched packets differs from stateful

translator. If corresponding addresses was not found in the lookup tables, the packet will not be dropped

and the search continues.

XLAT464 CLAT translation
XLAT464 CLAT NAT64 translator implements client-side stateless translation as defined in RFC6877

and is very similar to statless NAT64 translator explained above. Instead of lookup tables it uses one-to-

one mapping between IPv4 and IPv6 addresses using configured prefixes. This mode can be used as a

replacement of DNS64 service for applications that are not using it (e.g. VoIP) allowing them to access

IPv4-only Internet over IPv6-only networks with help of remote NAT64 translator.

The CLAT NAT64 configuration command is the following:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

nat64clat name create create-options

The following parameters can be configured:

clat_prefix ipv6_prefix/length

The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent source

IPv4 addresses.

plat_prefix ipv6_prefix/length

The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent

destination IPv4 addresses. This IPv6 prefix should be configured on a remote NAT64

translator.

log Turn on logging of all handled packets via BPF through ipfwlog0 interface.

-log Turn off logging of all handled packets via BPF.

allow_private
Turn on processing private IPv4 addresses. By default nat64clat instance will not process IPv4

packets with destination address from private ranges as defined in RFC1918.

-allow_private
Turn off private address handling in nat64clat instance.

Note that the behavior of CLAT translator with respect to not matched packets differs from stateful

translator. If corresponding addresses were not matched against prefixes configured, the packet will not

be dropped and the search continues.

IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6)
ipfw supports in-kernel IPv6-to-IPv6 network prefix translation as described in RFC6296. The kernel

module ipfw_nptv6 should be loaded or kernel should has options IPFIREWALL_NPTV6 to be able use

NPTv6 translator.

The NPTv6 configuration command is the following:

nptv6 name create create-options

The following parameters can be configured:

int_prefix ipv6_prefix

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

IPv6 prefix used in internal network. NPTv6 module translates source address when it matches

this prefix.

ext_prefix ipv6_prefix

IPv6 prefix used in external network. NPTv6 module translates destination address when it

matches this prefix.

ext_if nic

The NPTv6 module will use first global IPv6 address from interface nic as external prefix. It can

be useful when IPv6 prefix of external network is dynamically obtained. ext_prefix and ext_if
options are mutually exclusive.

prefixlen length

The length of specified IPv6 prefixes. It must be in range from 8 to 64.

Note that the prefix translation rules are silently ignored when IPv6 packet forwarding is disabled. To

enable the packet forwarding, set the sysctl variable net.inet6.ip6.forwarding to 1.

To let the packet continue after being translated, set the sysctl variable net.inet.ip.fw.one_pass to 0.

LOADER TUNABLES
Tunables can be set in loader(8) prompt, loader.conf(5) or kenv(1) before ipfw module gets loaded.

net.inet.ip.fw.enable: 1

Enables the firewall. Setting this variable to 0 lets you run your machine without firewall even if

compiled in.

net.inet6.ip6.fw.enable: 1

provides the same functionality as above for the IPv6 case.

net.link.ether.ipfw: 0

Controls whether layer2 packets are passed to ipfw. Default is no.

net.inet.ip.fw.default_to_accept: 0

Defines ipfw last rule behavior. This value overrides options
IPFW_DEFAULT_TO_(ACCEPT|DENY) from kernel configuration file.

net.inet.ip.fw.tables_max: 128

Defines number of tables available in ipfw. Number cannot exceed 65534.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

SYSCTL VARIABLES
A set of sysctl(8) variables controls the behaviour of the firewall and associated modules (dummynet,
bridge, sctp nat). These are shown below together with their default value (but always check with the

sysctl(8) command what value is actually in use) and meaning:

net.inet.ip.alias.sctp.accept_global_ootb_addip: 0

Defines how the nat responds to receipt of global OOTB ASCONF-AddIP:

0 No response (unless a partially matching association exists - ports and vtags match but

global address does not)

1 nat will accept and process all OOTB global AddIP messages.

Option 1 should never be selected as this forms a security risk. An attacker can establish

multiple fake associations by sending AddIP messages.

net.inet.ip.alias.sctp.chunk_proc_limit: 5

Defines the maximum number of chunks in an SCTP packet that will be parsed for a packet that

matches an existing association. This value is enforced to be greater or equal than

net.inet.ip.alias.sctp.initialising_chunk_proc_limit. A high value is a DoS risk yet setting too

low a value may result in important control chunks in the packet not being located and parsed.

net.inet.ip.alias.sctp.error_on_ootb: 1

Defines when the nat responds to any Out-of-the-Blue (OOTB) packets with ErrorM packets.

An OOTB packet is a packet that arrives with no existing association registered in the nat and is

not an INIT or ASCONF-AddIP packet:

0 ErrorM is never sent in response to OOTB packets.

1 ErrorM is only sent to OOTB packets received on the local side.

2 ErrorM is sent to the local side and on the global side ONLY if there is a partial match

(ports and vtags match but the source global IP does not). This value is only useful if the

nat is tracking global IP addresses.

3 ErrorM is sent in response to all OOTB packets on both the local and global side (DoS

risk).

At the moment the default is 0, since the ErrorM packet is not yet supported by most SCTP

stacks. When it is supported, and if not tracking global addresses, we recommend setting this

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

value to 1 to allow multi-homed local hosts to function with the nat. To track global addresses,

we recommend setting this value to 2 to allow global hosts to be informed when they need to

(re)send an ASCONF-AddIP. Value 3 should never be chosen (except for debugging) as the nat
will respond to all OOTB global packets (a DoS risk).

net.inet.ip.alias.sctp.hashtable_size: 2003

Size of hash tables used for nat lookups (100 < prime_number > 1000001). This value sets the

hash table size for any future created nat instance and therefore must be set prior to creating a nat
instance. The table sizes may be changed to suit specific needs. If there will be few concurrent

associations, and memory is scarce, you may make these smaller. If there will be many

thousands (or millions) of concurrent associations, you should make these larger. A prime

number is best for the table size. The sysctl update function will adjust your input value to the

next highest prime number.

net.inet.ip.alias.sctp.holddown_time: 0

Hold association in table for this many seconds after receiving a SHUTDOWN-COMPLETE.

This allows endpoints to correct shutdown gracefully if a shutdown_complete is lost and

retransmissions are required.

net.inet.ip.alias.sctp.init_timer: 15

Timeout value while waiting for (INIT-ACK|AddIP-ACK). This value cannot be 0.

net.inet.ip.alias.sctp.initialising_chunk_proc_limit: 2

Defines the maximum number of chunks in an SCTP packet that will be parsed when no existing

association exists that matches that packet. Ideally this packet will only be an INIT or ASCONF-

AddIP packet. A higher value may become a DoS risk as malformed packets can consume

processing resources.

net.inet.ip.alias.sctp.param_proc_limit: 25

Defines the maximum number of parameters within a chunk that will be parsed in a packet. As

for other similar sysctl variables, larger values pose a DoS risk.

net.inet.ip.alias.sctp.log_level: 0

Level of detail in the system log messages (0 - minimal, 1 - event, 2 - info, 3 - detail, 4 - debug, 5

- max debug). May be a good option in high loss environments.

net.inet.ip.alias.sctp.shutdown_time: 15

Timeout value while waiting for SHUTDOWN-COMPLETE. This value cannot be 0.

net.inet.ip.alias.sctp.track_global_addresses: 0

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Enables/disables global IP address tracking within the nat and places an upper limit on the

number of addresses tracked for each association:

0 Global tracking is disabled

>1 Enables tracking, the maximum number of addresses tracked for each association is

limited to this value

This variable is fully dynamic, the new value will be adopted for all newly arriving associations,

existing associations are treated as they were previously. Global tracking will decrease the

number of collisions within the nat at a cost of increased processing load, memory usage,

complexity, and possible nat state problems in complex networks with multiple nats. We

recommend not tracking global IP addresses, this will still result in a fully functional nat.

net.inet.ip.alias.sctp.up_timer: 300

Timeout value to keep an association up with no traffic. This value cannot be 0.

net.inet.ip.dummynet.codel.interval: 100000

Default codel AQM interval in microseconds. The value must be in the range 1..5000000.

net.inet.ip.dummynet.codel.target: 5000

Default codel AQM target delay time in microseconds (the minimum acceptable persistent queue

delay). The value must be in the range 1..5000000.

net.inet.ip.dummynet.expire: 1

Lazily delete dynamic pipes/queue once they have no pending traffic. You can disable this by

setting the variable to 0, in which case the pipes/queues will only be deleted when the threshold

is reached.

net.inet.ip.dummynet.fqcodel.flows: 1024

Defines the default total number of flow queues (sub-queues) that fq_codel creates and manages.

The value must be in the range 1..65536.

net.inet.ip.dummynet.fqcodel.interval: 100000

Default fq_codel scheduler/AQM interval in microseconds. The value must be in the range

1..5000000.

net.inet.ip.dummynet.fqcodel.limit: 10240

The default hard size limit (in unit of packet) of all queues managed by an instance of the

fq_codel scheduler. The value must be in the range 1..20480.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.dummynet.fqcodel.quantum: 1514

The default quantum (credit) of the fq_codel in unit of byte. The value must be in the range

1..9000.

net.inet.ip.dummynet.fqcodel.target: 5000

Default fq_codel scheduler/AQM target delay time in microseconds (the minimum acceptable

persistent queue delay). The value must be in the range 1..5000000.

net.inet.ip.dummynet.fqpie.alpha: 125

The default alpha parameter (scaled by 1000) for fq_pie scheduler/AQM. The value must be in

the range 1..7000.

net.inet.ip.dummynet.fqpie.beta: 1250

The default beta parameter (scaled by 1000) for fq_pie scheduler/AQM. The value must be in

the range 1..7000.

net.inet.ip.dummynet.fqpie.flows: 1024

Defines the default total number of flow queues (sub-queues) that fq_pie creates and manages.

The value must be in the range 1..65536.

net.inet.ip.dummynet.fqpie.limit: 10240

The default hard size limit (in unit of packet) of all queues managed by an instance of the fq_pie
scheduler. The value must be in the range 1..20480.

net.inet.ip.dummynet.fqpie.max_burst: 150000

The default maximum period of microseconds that fq_pie scheduler/AQM does not drop/mark

packets. The value must be in the range 1..10000000.

net.inet.ip.dummynet.fqpie.max_ecnth: 99

The default maximum ECN probability threshold (scaled by 1000) for fq_pie scheduler/AQM.

The value must be in the range 1..7000.

net.inet.ip.dummynet.fqpie.quantum: 1514

The default quantum (credit) of the fq_pie in unit of byte. The value must be in the range

1..9000.

net.inet.ip.dummynet.fqpie.target: 15000

The default target delay of the fq_pie in unit of microsecond. The value must be in the range

1..5000000.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.dummynet.fqpie.tupdate: 15000

The default tupdate of the fq_pie in unit of microsecond. The value must be in the range

1..5000000.

net.inet.ip.dummynet.hash_size: 64

Default size of the hash table used for dynamic pipes/queues. This value is used when no

buckets option is specified when configuring a pipe/queue.

net.inet.ip.dummynet.io_fast: 0

If set to a non-zero value, the "fast" mode of dummynet operation (see above) is enabled.

net.inet.ip.dummynet.io_pkt

Number of packets passed to dummynet.

net.inet.ip.dummynet.io_pkt_drop

Number of packets dropped by dummynet.

net.inet.ip.dummynet.io_pkt_fast

Number of packets bypassed by the dummynet scheduler.

net.inet.ip.dummynet.max_chain_len: 16

Target value for the maximum number of pipes/queues in a hash bucket. The product

max_chain_len*hash_size is used to determine the threshold over which empty pipes/queues will

be expired even when net.inet.ip.dummynet.expire=0.

net.inet.ip.dummynet.red_lookup_depth: 256

net.inet.ip.dummynet.red_avg_pkt_size: 512

net.inet.ip.dummynet.red_max_pkt_size: 1500

Parameters used in the computations of the drop probability for the RED algorithm.

net.inet.ip.dummynet.pie.alpha: 125

The default alpha parameter (scaled by 1000) for pie AQM. The value must be in the range

1..7000.

net.inet.ip.dummynet.pie.beta: 1250

The default beta parameter (scaled by 1000) for pie AQM. The value must be in the range

1..7000.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.dummynet.pie.max_burst: 150000

The default maximum period of microseconds that pie AQM does not drop/mark packets. The

value must be in the range 1..10000000.

net.inet.ip.dummynet.pie.max_ecnth: 99

The default maximum ECN probability threshold (scaled by 1000) for pie AQM. The value

must be in the range 1..7000.

net.inet.ip.dummynet.pie.target: 15000

The default target delay of pie AQM in unit of microsecond. The value must be in the range

1..5000000.

net.inet.ip.dummynet.pie.tupdate: 15000

The default tupdate of pie AQM in unit of microsecond. The value must be in the range

1..5000000.

net.inet.ip.dummynet.pipe_byte_limit: 1048576

net.inet.ip.dummynet.pipe_slot_limit: 100

The maximum queue size that can be specified in bytes or packets. These limits prevent

accidental exhaustion of resources such as mbufs. If you raise these limits, you should make

sure the system is configured so that sufficient resources are available.

net.inet.ip.fw.autoinc_step: 100

Delta between rule numbers when auto-generating them. The value must be in the range 1..1000.

net.inet.ip.fw.curr_dyn_buckets: net.inet.ip.fw.dyn_buckets

The current number of buckets in the hash table for dynamic rules (readonly).

net.inet.ip.fw.debug: 1

Controls debugging messages produced by ipfw.

net.inet.ip.fw.default_rule: 65535

The default rule number (read-only). By the design of ipfw, the default rule is the last one, so its

number can also serve as the highest number allowed for a rule.

net.inet.ip.fw.dyn_buckets: 256

The number of buckets in the hash table for dynamic rules. Must be a power of 2, up to 65536.

It only takes effect when all dynamic rules have expired, so you are advised to use a flush
command to make sure that the hash table is resized.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.fw.dyn_count: 3

Current number of dynamic rules (read-only).

net.inet.ip.fw.dyn_keepalive: 1

Enables generation of keepalive packets for keep-state rules on TCP sessions. A keepalive is

generated to both sides of the connection every 5 seconds for the last 20 seconds of the lifetime

of the rule.

net.inet.ip.fw.dyn_max: 8192

Maximum number of dynamic rules. When you hit this limit, no more dynamic rules can be

installed until old ones expire.

net.inet.ip.fw.dyn_ack_lifetime: 300

net.inet.ip.fw.dyn_syn_lifetime: 20

net.inet.ip.fw.dyn_fin_lifetime: 1

net.inet.ip.fw.dyn_rst_lifetime: 1

net.inet.ip.fw.dyn_udp_lifetime: 5

net.inet.ip.fw.dyn_short_lifetime: 30

These variables control the lifetime, in seconds, of dynamic rules. Upon the initial SYN

exchange the lifetime is kept short, then increased after both SYN have been seen, then

decreased again during the final FIN exchange or when a RST is received. Both

dyn_fin_lifetime and dyn_rst_lifetime must be strictly lower than 5 seconds, the period of

repetition of keepalives. The firewall enforces that.

net.inet.ip.fw.dyn_keep_states: 0

Keep dynamic states on rule/set deletion. States are relinked to default rule (65535). This can be

handly for ruleset reload. Turned off by default.

net.inet.ip.fw.one_pass: 1

When set, the packet exiting from the dummynet pipe or from ng_ipfw(4) node is not passed

though the firewall again. Otherwise, after an action, the packet is reinjected into the firewall at

the next rule.

net.inet.ip.fw.tables_max: 128

Maximum number of tables.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

net.inet.ip.fw.verbose: 1

Enables verbose messages.

net.inet.ip.fw.verbose_limit: 0

Limits the number of messages produced by a verbose firewall.

net.inet6.ip6.fw.deny_unknown_exthdrs: 1

If enabled packets with unknown IPv6 Extension Headers will be denied.

net.link.bridge.ipfw: 0

Controls whether bridged packets are passed to ipfw. Default is no.

net.inet.ip.fw.nat64_debug: 0

Controls debugging messages produced by ipfw_nat64 module.

net.inet.ip.fw.nat64_direct_output: 0

Controls the output method used by ipfw_nat64 module:

0 A packet is handled by ipfw twice. First time an original packet is handled by ipfw and

consumed by ipfw_nat64 translator. Then translated packet is queued via netisr to input

processing again.

1 A packet is handled by ipfw only once, and after translation it will be pushed directly to

outgoing interface.

INTERNAL DIAGNOSTICS
There are some commands that may be useful to understand current state of certain subsystems inside

kernel module. These commands provide debugging output which may change without notice.

Currently the following commands are available as internal sub-options:

iflist Lists all interface which are currently tracked by ipfw with their in-kernel status.

talist List all table lookup algorithms currently available.

EXAMPLES
There are far too many possible uses of ipfw so this Section will only give a small set of examples.

BASIC PACKET FILTERING
This command adds an entry which denies all tcp packets from cracker.evil.org to the telnet port of

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

wolf.tambov.su from being forwarded by the host:

ipfw add deny tcp from cracker.evil.org to wolf.tambov.su telnet

This one disallows any connection from the entire cracker’s network to my host:

ipfw add deny ip from 123.45.67.0/24 to my.host.org

A first and efficient way to limit access (not using dynamic rules) is the use of the following rules:

ipfw add allow tcp from any to any established

ipfw add allow tcp from net1 portlist1 to net2 portlist2 setup

ipfw add allow tcp from net3 portlist3 to net3 portlist3 setup

...

ipfw add deny tcp from any to any

The first rule will be a quick match for normal TCP packets, but it will not match the initial SYN packet,

which will be matched by the setup rules only for selected source/destination pairs. All other SYN

packets will be rejected by the final deny rule.

If you administer one or more subnets, you can take advantage of the address sets and or-blocks and

write extremely compact rulesets which selectively enable services to blocks of clients, as below:

goodguys="{ 10.1.2.0/24{20,35,66,18} or 10.2.3.0/28{6,3,11} }"

badguys="10.1.2.0/24{8,38,60}"

ipfw add allow ip from ${goodguys} to any

ipfw add deny ip from ${badguys} to any

... normal policies ...

Allow any transit packets coming from single vlan 10 and going out to vlans 100-1000:

ipfw add 10 allow out recv vlan10 \

{ xmit vlan1000 or xmit "vlan[1-9]??" }

The verrevpath option could be used to do automated anti-spoofing by adding the following to the top of

a ruleset:

ipfw add deny ip from any to any not verrevpath in

This rule drops all incoming packets that appear to be coming to the system on the wrong interface. For

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

example, a packet with a source address belonging to a host on a protected internal network would be

dropped if it tried to enter the system from an external interface.

The antispoof option could be used to do similar but more restricted anti-spoofing by adding the

following to the top of a ruleset:

ipfw add deny ip from any to any not antispoof in

This rule drops all incoming packets that appear to be coming from another directly connected system

but on the wrong interface. For example, a packet with a source address of 192.168.0.0/24, configured

on fxp0, but coming in on fxp1 would be dropped.

The setdscp option could be used to (re)mark user traffic, by adding the following to the appropriate

place in ruleset:

ipfw add setdscp be ip from any to any dscp af11,af21

SELECTIVE MIRRORING
If your network has network traffic analyzer connected to your host directly via dedicated interface or

remotely via RSPAN vlan, you can selectively mirror some Ethernet layer2 frames to the analyzer.

First, make sure your firewall is already configured and runs. Then, enable layer2 processing if not

already enabled:

sysctl net.link.ether.ipfw=1

Next, load needed additional kernel modules:

kldload ng_ether ng_ipfw

Optionally, make system load these modules automatically at startup:

sysrc kld_list+="ng_ether ng_ipfw"

Next, configure ng_ipfw(4) kernel module to transmit mirrored copies of layer2 frames out via vlan900

interface:

ngctl connect ipfw: vlan900: 1 lower

Think of "1" here as of "mirroring instance index" and vlan900 is its destination. You can have arbitrary

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

number of instances. Refer to ng_ipfw(4) for details.

At last, actually start mirroring of selected frames using "instance 1". For frames incoming from em0

interface:

ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 in recv em0

For frames outgoing to em0 interface:

ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 out xmit em0

For both incoming and outgoing frames while flowing through em0:

ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 via em0

Make sure you do not perform mirroring for already duplicated frames or kernel may hang as there is no

safety net.

DYNAMIC RULES
In order to protect a site from flood attacks involving fake TCP packets, it is safer to use dynamic rules:

ipfw add check-state

ipfw add deny tcp from any to any established

ipfw add allow tcp from my-net to any setup keep-state

This will let the firewall install dynamic rules only for those connection which start with a regular SYN

packet coming from the inside of our network. Dynamic rules are checked when encountering the first

occurrence of a check-state, keep-state or limit rule. A check-state rule should usually be placed near

the beginning of the ruleset to minimize the amount of work scanning the ruleset. Your mileage may

vary.

For more complex scenarios with dynamic rules record-state and defer-action can be used to precisely

control creation and checking of dynamic rules. Example of usage of these options are provided in

NETWORK ADDRESS TRANSLATION (NAT) Section.

To limit the number of connections a user can open you can use the following type of rules:

ipfw add allow tcp from my-net/24 to any setup limit src-addr 10

ipfw add allow tcp from any to me setup limit src-addr 4

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

The former (assuming it runs on a gateway) will allow each host on a /24 network to open at most 10

TCP connections. The latter can be placed on a server to make sure that a single client does not use

more than 4 simultaneous connections.

BEWARE: stateful rules can be subject to denial-of-service attacks by a SYN-flood which opens a huge

number of dynamic rules. The effects of such attacks can be partially limited by acting on a set of

sysctl(8) variables which control the operation of the firewall.

Here is a good usage of the list command to see accounting records and timestamp information:

ipfw -at list

or in short form without timestamps:

ipfw -a list

which is equivalent to:

ipfw show

Next rule diverts all incoming packets from 192.168.2.0/24 to divert port 5000:

ipfw divert 5000 ip from 192.168.2.0/24 to any in

TRAFFIC SHAPING
The following rules show some of the applications of ipfw and dummynet for simulations and the like.

This rule drops random incoming packets with a probability of 5%:

ipfw add prob 0.05 deny ip from any to any in

A similar effect can be achieved making use of dummynet pipes:

dnctl add pipe 10 ip from any to any

dnctl pipe 10 config plr 0.05

We can use pipes to artificially limit bandwidth, e.g. on a machine acting as a router, if we want to limit

traffic from local clients on 192.168.2.0/24 we do:

ipfw add pipe 1 ip from 192.168.2.0/24 to any out

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

dnctl pipe 1 config bw 300Kbit/s queue 50KBytes

note that we use the out modifier so that the rule is not used twice. Remember in fact that ipfw rules are

checked both on incoming and outgoing packets.

Should we want to simulate a bidirectional link with bandwidth limitations, the correct way is the

following:

ipfw add pipe 1 ip from any to any out

ipfw add pipe 2 ip from any to any in

dnctl pipe 1 config bw 64Kbit/s queue 10Kbytes

dnctl pipe 2 config bw 64Kbit/s queue 10Kbytes

The above can be very useful, e.g. if you want to see how your fancy Web page will look for a

residential user who is connected only through a slow link. You should not use only one pipe for both

directions, unless you want to simulate a half-duplex medium (e.g. AppleTalk, Ethernet, IRDA). It is

not necessary that both pipes have the same configuration, so we can also simulate asymmetric links.

Should we want to verify network performance with the RED queue management algorithm:

ipfw add pipe 1 ip from any to any

dnctl pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1

Another typical application of the traffic shaper is to introduce some delay in the communication. This

can significantly affect applications which do a lot of Remote Procedure Calls, and where the round-trip-

time of the connection often becomes a limiting factor much more than bandwidth:

ipfw add pipe 1 ip from any to any out

ipfw add pipe 2 ip from any to any in

dnctl pipe 1 config delay 250ms bw 1Mbit/s

dnctl pipe 2 config delay 250ms bw 1Mbit/s

Per-flow queueing can be useful for a variety of purposes. A very simple one is counting traffic:

ipfw add pipe 1 tcp from any to any

ipfw add pipe 1 udp from any to any

ipfw add pipe 1 ip from any to any

dnctl pipe 1 config mask all

The above set of rules will create queues (and collect statistics) for all traffic. Because the pipes have no

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

limitations, the only effect is collecting statistics. Note that we need 3 rules, not just the last one,

because when ipfw tries to match IP packets it will not consider ports, so we would not see connections

on separate ports as different ones.

A more sophisticated example is limiting the outbound traffic on a net with per-host limits, rather than

per-network limits:

ipfw add pipe 1 ip from 192.168.2.0/24 to any out

ipfw add pipe 2 ip from any to 192.168.2.0/24 in

dnctl pipe 1 config mask src-ip 0x000000ff bw 200Kbit/s queue 20Kbytes

dnctl pipe 2 config mask dst-ip 0x000000ff bw 200Kbit/s queue 20Kbytes

LOOKUP TABLES
In the following example, we need to create several traffic bandwidth classes and we need different

hosts/networks to fall into different classes. We create one pipe for each class and configure them

accordingly. Then we create a single table and fill it with IP subnets and addresses. For each

subnet/host we set the argument equal to the number of the pipe that it should use. Then we classify

traffic using a single rule:

dnctl pipe 1 config bw 1000Kbyte/s

dnctl pipe 4 config bw 4000Kbyte/s

...

ipfw table T1 create type addr

ipfw table T1 add 192.168.2.0/24 1

ipfw table T1 add 192.168.0.0/27 4

ipfw table T1 add 192.168.0.2 1

...

ipfw add pipe tablearg ip from ’table(T1)’ to any

Using the fwd action, the table entries may include hostnames and IP addresses.

ipfw table T2 create type addr valtype ipv4

ipfw table T2 add 192.168.2.0/24 10.23.2.1

ipfw table T2 add 192.168.0.0/27 router1.dmz

...

ipfw add 100 fwd tablearg ip from any to ’table(T2)’

In the following example per-interface firewall is created:

ipfw table IN create type iface valtype skipto,fib

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

ipfw table IN add vlan20 12000,12

ipfw table IN add vlan30 13000,13

ipfw table OUT create type iface valtype skipto

ipfw table OUT add vlan20 22000

ipfw table OUT add vlan30 23000

..

ipfw add 100 setfib tablearg ip from any to any recv ’table(IN)’ in

ipfw add 200 skipto tablearg ip from any to any recv ’table(IN)’ in

ipfw add 300 skipto tablearg ip from any to any xmit ’table(OUT)’ out

The following example illustrate usage of flow tables:

ipfw table fl create type flow:src-ip,proto,dst-ip,dst-port

ipfw table fl add 2a02:6b8:77::88,tcp,2a02:6b8:77::99,80 11

ipfw table fl add 10.0.0.1,udp,10.0.0.2,53 12

..

ipfw add 100 allow ip from any to any flow ’table(fl,11)’ recv ix0

SETS OF RULES
To add a set of rules atomically, e.g. set 18:

ipfw set disable 18

ipfw add NN set 18 ... # repeat as needed

ipfw set enable 18

To delete a set of rules atomically the command is simply:

ipfw delete set 18

To test a ruleset and disable it and regain control if something goes wrong:

ipfw set disable 18

ipfw add NN set 18 ... # repeat as needed

ipfw set enable 18; echo done; sleep 30 && ipfw set disable 18

Here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be

left active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep

terminates thus restoring the previous situation.

To show rules of the specific set:

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

ipfw set 18 show

To show rules of the disabled set:

ipfw -S set 18 show

To clear a specific rule counters of the specific set:

ipfw set 18 zero NN

To delete a specific rule of the specific set:

ipfw set 18 delete NN

NAT, REDIRECT AND LSNAT
First redirect all the traffic to nat instance 123:

ipfw add nat 123 all from any to any

Then to configure nat instance 123 to alias all the outgoing traffic with ip 192.168.0.123, blocking all

incoming connections, trying to keep same ports on both sides, clearing aliasing table on address change

and keeping a log of traffic/link statistics:

ipfw nat 123 config ip 192.168.0.123 log deny_in reset same_ports

Or to change address of instance 123, aliasing table will be cleared (see reset option):

ipfw nat 123 config ip 10.0.0.1

To see configuration of nat instance 123:

ipfw nat 123 show config

To show logs of all instances:

ipfw nat show log

To see configurations of all instances:

ipfw nat show config

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Or a redirect rule with mixed modes could looks like:

ipfw nat 123 config redirect_addr 10.0.0.1 10.0.0.66

redirect_port tcp 192.168.0.1:80 500

redirect_proto udp 192.168.1.43 192.168.1.1

redirect_addr 192.168.0.10,192.168.0.11

10.0.0.100 # LSNAT

redirect_port tcp 192.168.0.1:80,192.168.0.10:22

500 # LSNAT

or it could be split in:

ipfw nat 1 config redirect_addr 10.0.0.1 10.0.0.66

ipfw nat 2 config redirect_port tcp 192.168.0.1:80 500

ipfw nat 3 config redirect_proto udp 192.168.1.43 192.168.1.1

ipfw nat 4 config redirect_addr 192.168.0.10,192.168.0.11,192.168.0.12

10.0.0.100

ipfw nat 5 config redirect_port tcp

192.168.0.1:80,192.168.0.10:22,192.168.0.20:25 500

Sometimes you may want to mix NAT and dynamic rules. It could be achieved with record-state and

defer-action options. Problem is, you need to create dynamic rule before NAT and check it after NAT

actions (or vice versa) to have consistent addresses and ports. Rule with keep-state option will trigger

activation of existing dynamic state, and action of such rule will be performed as soon as rule is

matched. In case of NAT and allow rule packet need to be passed to NAT, not allowed as soon is

possible.

There is example of set of rules to achieve this. Bear in mind that this is example only and it is not very

useful by itself.

On way out, after all checks place this rules:

ipfw add allow record-state defer-action

ipfw add nat 1

And on way in there should be something like this:

ipfw add nat 1

ipfw add check-state

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

Please note, that first rule on way out doesn’t allow packet and doesn’t execute existing dynamic rules.

All it does, create new dynamic rule with allow action, if it is not created yet. Later, this dynamic rule is

used on way in by check-state rule.

CONFIGURING CODEL, PIE, FQ-CODEL and FQ-PIE AQM
codel and pie AQM can be configured for dummynet pipe or queue.

To configure a pipe with codel AQM using default configuration for traffic from 192.168.0.0/24 and

1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s codel

ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any

To configure a queue with codel AQM using different configurations parameters for traffic from

192.168.0.0/24 and 1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s

dnctl queue 1 config pipe 1 codel target 8ms interval 160ms ecn

ipfw add 100 queue 1 ip from 192.168.0.0/24 to any

To configure a pipe with pie AQM using default configuration for traffic from 192.168.0.0/24 and

1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s pie

ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any

To configure a queue with pie AQM using different configuration parameters for traffic from

192.168.0.0/24 and 1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s

dnctl queue 1 config pipe 1 pie target 20ms tupdate 30ms ecn

ipfw add 100 queue 1 ip from 192.168.0.0/24 to any

fq_codel and fq_pie AQM can be configured for dummynet schedulers.

To configure fq_codel scheduler using different configurations parameters for traffic from

192.168.0.0/24 and 1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s

dnctl sched 1 config pipe 1 type fq_codel

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

dnctl queue 1 config sched 1

ipfw add 100 queue 1 ip from 192.168.0.0/24 to any

To change fq_codel default configuration for a sched such as disable ECN and change the target to

10ms, we do:

dnctl sched 1 config pipe 1 type fq_codel target 10ms noecn

Similar to fq_codel, to configure fq_pie scheduler using different configurations parameters for traffic

from 192.168.0.0/24 and 1Mbits/s rate limit, we do:

dnctl pipe 1 config bw 1mbits/s

dnctl sched 1 config pipe 1 type fq_pie

dnctl queue 1 config sched 1

ipfw add 100 queue 1 ip from 192.168.0.0/24 to any

The configurations of fq_pie sched can be changed in a similar way as for fq_codel

SEE ALSO
cpp(1), m4(1), fnmatch(3), altq(4), divert(4), dummynet(4), if_bridge(4), ip(4), ipfirewall(4),

ng_ether(4), ng_ipfw(4), protocols(5), services(5), init(8), kldload(8), reboot(8), sysctl(8), syslogd(8),

sysrc(8)

HISTORY
The ipfw utility first appeared in FreeBSD 2.0. dummynet was introduced in FreeBSD 2.2.8. Stateful

extensions were introduced in FreeBSD 4.0. ipfw2 was introduced in Summer 2002.

AUTHORS
Ugen J. S. Antsilevich,

Poul-Henning Kamp,

Alex Nash,

Archie Cobbs,

Luigi Rizzo,

Rasool Al-Saadi.

API based upon code written by Daniel Boulet for BSDI.

Dummynet has been introduced by Luigi Rizzo in 1997-1998.

Some early work (1999-2000) on the dummynet traffic shaper supported by Akamba Corp.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

The ipfw core (ipfw2) has been completely redesigned and reimplemented by Luigi Rizzo in summer

2002. Further actions and options have been added by various developers over the years.

In-kernel NAT support written by Paolo Pisati <piso@FreeBSD.org> as part of a Summer of Code 2005

project.

SCTP nat support has been developed by The Centre for Advanced Internet Architectures (CAIA)

<http://www.caia.swin.edu.au>. The primary developers and maintainers are David Hayes and Jason

But. For further information visit: <http://www.caia.swin.edu.au/urp/SONATA>

Delay profiles have been developed by Alessandro Cerri and Luigi Rizzo, supported by the European

Commission within Projects Onelab and Onelab2.

CoDel, PIE, FQ-CoDel and FQ-PIE AQM for Dummynet have been implemented by The Centre for

Advanced Internet Architectures (CAIA) in 2016, supported by The Comcast Innovation Fund. The

primary developer is Rasool Al-Saadi.

BUGS
The syntax has grown over the years and sometimes it might be confusing. Unfortunately, backward

compatibility prevents cleaning up mistakes made in the definition of the syntax.

!!! WARNING !!!

Misconfiguring the firewall can put your computer in an unusable state, possibly shutting down network

services and requiring console access to regain control of it.

Incoming packet fragments diverted by divert are reassembled before delivery to the socket. The action

used on those packet is the one from the rule which matches the first fragment of the packet.

Packets diverted to userland, and then reinserted by a userland process may lose various packet

attributes. The packet source interface name will be preserved if it is shorter than 8 bytes and the

userland process saves and reuses the sockaddr_in (as does natd(8)); otherwise, it may be lost. If a

packet is reinserted in this manner, later rules may be incorrectly applied, making the order of divert
rules in the rule sequence very important.

Dummynet drops all packets with IPv6 link-local addresses.

Rules using uid or gid may not behave as expected. In particular, incoming SYN packets may have no

uid or gid associated with them since they do not yet belong to a TCP connection, and the uid/gid

associated with a packet may not be as expected if the associated process calls setuid(2) or similar

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

system calls.

Rule syntax is subject to the command line environment and some patterns may need to be escaped with

the backslash character or quoted appropriately.

Due to the architecture of libalias(3), ipfw nat is not compatible with the TCP segmentation offloading

(TSO). Thus, to reliably nat your network traffic, please disable TSO on your NICs using ifconfig(8).

ICMP error messages are not implicitly matched by dynamic rules for the respective conversations. To

avoid failures of network error detection and path MTU discovery, ICMP error messages may need to be

allowed explicitly through static rules.

Rules using call and return actions may lead to confusing behaviour if ruleset has mistakes, and/or

interaction with other subsystems (netgraph, dummynet, etc.) is used. One possible case for this is

packet leaving ipfw in subroutine on the input pass, while later on output encountering unpaired return
first. As the call stack is kept intact after input pass, packet will suddenly return to the rule number used

on input pass, not on output one. Order of processing should be checked carefully to avoid such

mistakes.

IPFW(8) FreeBSD System Manager’s Manual IPFW(8)

FreeBSD 14.0-RELEASE-p11 September 28, 2023 FreeBSD 14.0-RELEASE-p11

