
NAME
editline, el_init, el_init_fd, el_end, el_reset, el_gets, el_wgets, el_getc, el_wgetc, el_push, el_wpush,

el_parse, el_wparse, el_set, el_wset, el_get, el_wget, el_source, el_resize, el_cursor, el_line, el_wline,

el_insertstr, el_winsertstr, el_deletestr, el_wdeletestr, history_init, history_winit, history_end,

history_wend, history, history_w, tok_init, tok_winit, tok_end, tok_wend, tok_reset, tok_wreset,
tok_line, tok_wline, tok_str, tok_wstr - line editor, history and tokenization functions

LIBRARY
Command Line Editor Library (libedit, -ledit)

SYNOPSIS
#include <histedit.h>

EditLine *

el_init(const char *prog, FILE *fin, FILE *fout, FILE *ferr);

EditLine *

el_init_fd(const char *prog, FILE *fin, FILE *fout, FILE *ferr, int fdin, int fdout, int fderr);

void

el_end(EditLine *e);

void

el_reset(EditLine *e);

const char *

el_gets(EditLine *e, int *count);

const wchar_t *

el_wgets(EditLine *e, int *count);

int

el_getc(EditLine *e, char *ch);

int

el_wgetc(EditLine *e, wchar_t *wc);

void

el_push(EditLine *e, const char *mbs);

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

void

el_wpush(EditLine *e, const wchar_t *wcs);

int

el_parse(EditLine *e, int argc, const char *argv[]);

int

el_wparse(EditLine *e, int argc, const wchar_t *argv[]);

int

el_set(EditLine *e, int op, ...);

int

el_wset(EditLine *e, int op, ...);

int

el_get(EditLine *e, int op, ...);

int

el_wget(EditLine *e, int op, ...);

int

el_source(EditLine *e, const char *file);

void

el_resize(EditLine *e);

int

el_cursor(EditLine *e, int count);

const LineInfo *

el_line(EditLine *e);

const LineInfoW *

el_wline(EditLine *e);

int

el_insertstr(EditLine *e, const char *str);

int

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

el_winsertstr(EditLine *e, const wchar_t *str);

void

el_deletestr(EditLine *e, int count);

void

el_wdeletestr(EditLine *e, int count);

History *

history_init(void);

HistoryW *

history_winit(void);

void

history_end(History *h);

void

history_wend(HistoryW *h);

int

history(History *h, HistEvent *ev, int op, ...);

int

history_w(HistoryW *h, HistEventW *ev, int op, ...);

Tokenizer *

tok_init(const char *IFS);

TokenizerW *

tok_winit(const wchar_t *IFS);

void

tok_end(Tokenizer *t);

void

tok_wend(TokenizerW *t);

void

tok_reset(Tokenizer *t);

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

void

tok_wreset(TokenizerW *t);

int

tok_line(Tokenizer *t, const LineInfo *li, int *argc, const char **argv[], int *cursorc, int *cursoro);

int

tok_wline(TokenizerW *t, const LineInfoW *li, int *argc, const wchar_t **argv[], int *cursorc, int

*cursoro);

int

tok_str(Tokenizer *t, const char *str, int *argc, const char **argv[]);

int

tok_wstr(TokenizerW *t, const wchar_t *str, int *argc, const wchar_t **argv[]);

DESCRIPTION
The editline library provides generic line editing, history and tokenization functions, similar to those

found in sh(1).

These functions are available in the libedit library (which needs the libtermcap library). Programs

should be linked with -ledit ltermcap .

The editline library respects the LC_CTYPE locale set by the application program and never uses

setlocale(3) to change the locale.

LINE EDITING FUNCTIONS
The line editing functions use a common data structure, EditLine, which is created by el_init() or

el_init_fd() and freed by el_end().

The wide-character functions behave the same way as their narrow counterparts.

The following functions are available:

el_init()
Initialize the line editor, and return a data structure to be used by all other line editing functions, or

NULL on failure. prog is the name of the invoking program, used when reading the editrc(5) file

to determine which settings to use. fin, fout and ferr are the input, output, and error streams

(respectively) to use. In this documentation, references to ‘‘the tty’’ are actually to this

input/output stream combination.

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

el_init_fd()

Like el_init() but allows specifying file descriptors for the stdio(3) corresponding streams, in case

those were created with funopen(3).

el_end()

Clean up and finish with e, assumed to have been created with el_init() or el_init_fd().

el_reset()
Reset the tty and the parser. This should be called after an error which may have upset the tty’s

state.

el_gets()

Read a line from the tty. count is modified to contain the number of characters read. Returns the

line read if successful, or NULL if no characters were read or if an error occurred. If an error

occurred, count is set to -1 and errno contains the error code that caused it. The return value may

not remain valid across calls to el_gets() and must be copied if the data is to be retained.

el_wgetc()

Read a wide character from the tty, respecting the current locale, or from the input queue described

in editline(7) if that is not empty, and store it in wc. If an invalid or incomplete character is found,

it is discarded, errno is set to Er EILSEQ , and the next character is read and stored in wc. Returns

1 if a valid character was read, 0 on end of file, or -1 on read(2) failure. In the latter case, errno is

set to indicate the error.

el_getc()

Read a wide character as described for el_wgetc() and return 0 on end of file or -1 on failure. If

the wide character can be represented as a single-byte character, convert it with wctob(3), store the

result in ch, and return 1; otherwise, set errno to Er ERANGE and return -1. In the C or POSIX

locale, this simply reads a byte, but for any other locale, including UTF-8, this is rarely useful.

el_wpush()

Push the wide character string wcs back onto the input queue described in editline(7). If the queue

overflows, for example due to a recursive macro, or if an error occurs, for example because wcs is

NULL or memory allocation fails, the function beeps at the user, but does not report the problem

to the caller.

el_push()

Use the current locale to convert the multibyte string mbs to a wide character string, and pass the

result to el_wpush().

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

el_parse()

Parses the argv array (which is argc elements in size) to execute builtin editline commands. If the

command is prefixed with ‘‘prog :’’ then el_parse() will only execute the command if ‘‘prog’’

matches the prog argument supplied to el_init(). The return value is -1 if the command is

unknown, 0 if there was no error or ‘‘prog’’ didn’t match, or 1 if the command returned an error.

Refer to editrc(5) for more information.

el_set()
Set editline parameters. op determines which parameter to set, and each operation has its own

parameter list. Returns 0 on success, -1 on failure.

The following values for op are supported, along with the required argument list:

EL_PROMPT , char *(*f)(EditLine *)

Define prompt printing function as f, which is to return a string that contains the prompt.

EL_PROMPT_ESC , char *(*f)(EditLine *), Fa char c

Same as EL_PROMPT , but the c argument indicates the start/stop literal prompt character.

If a start/stop literal character is found in the prompt, the character itself is not printed, but

characters after it are printed directly to the terminal without affecting the state of the current

line. A subsequent second start/stop literal character ends this behavior. This is typically used

to embed literal escape sequences that change the color/style of the terminal in the prompt.

Note that the literal escape character cannot be the last character in the prompt, as the escape

sequence is attached to the next character in the prompt. 0 unsets it.

EL_REFRESH

Re-display the current line on the next terminal line.

EL_RPROMPT , char *(*f)(EditLine *)

Define right side prompt printing function as f, which is to return a string that contains the

prompt.

EL_RPROMPT_ESC , char *(*f)(EditLine *), Fa char c

Define the right prompt printing function but with a literal escape character.

EL_TERMINAL , const char *type

Define terminal type of the tty to be type, or to TERM if type is NULL .

EL_EDITOR , const char *mode

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

Set editing mode to mode, which must be one of ‘‘emacs’’ or ‘‘vi’’.

EL_SIGNAL , int flag

If flag is non-zero, editline will install its own signal handler for the following signals when

reading command input: SIGCONT , SIGHUP , SIGINT , SIGQUIT , SIGSTOP , SIGTERM ,

SIGTSTP , and SIGWINCH . Otherwise, the current signal handlers will be used.

EL_BIND , const char *, Fa ..., Dv NULL

Perform the bind builtin command. Refer to editrc(5) for more information.

EL_ECHOTC , const char *, Fa ..., Dv NULL

Perform the echotc builtin command. Refer to editrc(5) for more information.

EL_SETTC , const char *, Fa ..., Dv NULL

Perform the settc builtin command. Refer to editrc(5) for more information.

EL_SETTY , const char *, Fa ..., Dv NULL

Perform the setty builtin command. Refer to editrc(5) for more information.

EL_TELLTC , const char *, Fa ..., Dv NULL

Perform the telltc builtin command. Refer to editrc(5) for more information.

EL_ADDFN , const char *name, Fa const char *help,

Fa "unsigned char (*func)(EditLine *e, int ch)" Add a user defined function, func(), referred to

as name which is invoked when a key which is bound to name is entered. help is a

description of name. At invocation time, ch is the key which caused the invocation. The

return value of func() should be one of:

CC_NORM

Add a normal character.

CC_NEWLINE

End of line was entered.

CC_EOF

EOF was entered.

CC_ARGHACK

Expecting further command input as arguments, do nothing visually.

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

CC_REFRESH

Refresh display.

CC_REFRESH_BEEP

Refresh display, and beep.

CC_CURSOR

Cursor moved, so update and perform CC_REFRESH .

CC_REDISPLAY

Redisplay entire input line. This is useful if a key binding outputs extra information.

CC_ERROR

An error occurred. Beep, and flush tty.

CC_FATAL

Fatal error, reset tty to known state.

EL_HIST , History *(*func)(History *, int op, ...),

Fa "const char *ptr" Defines which history function to use, which is usually history(). ptr

should be the value returned by history_init().

EL_EDITMODE , int flag

If flag is non-zero, editing is enabled (the default). Note that this is only an indication, and

does not affect the operation of . At this time, it is the caller’s responsibility to check this

(using el_get()) to determine if editing should be enabled or not.

EL_UNBUFFERED , int flag

If flag is zero, unbuffered mode is disabled (the default). In unbuffered mode, el_gets() will

return immediately after processing a single character.

EL_SAFEREAD , int flag

If the flag argument is non-zero, then editline attempts to recover from read errors, ignoring

the first interrrupted error, and trying to reset the input file descriptor to reset non-blocking

I/O. This is disabled by default, and desirable only when editline is used in shell-like

applications.

EL_GETCFN , el_rfunc_t f

Whenever reading a character, use the function -ragged -offset indent -compact

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

int

Fo f EditLine *e wchar_t *wc Fc which stores the character in wc and returns 1 on success, 0 on

end of file, or -1 on I/O or encoding errors. Functions internally using it include el_wgets(),

el_wgetc(), el_gets(), and el_getc(). Initially, a builtin function is installed, and replacing it is

discouraged because writing such a function is very error prone. The builtin function can be

restored at any time by passing the special value EL_BUILTIN_GETCFN instead of a function

pointer.

EL_CLIENTDATA , void *data

Register data to be associated with this EditLine structure. It can be retrieved with the

corresponding el_get(); call.

EL_SETFP , int fd, Fa FILE *fp

Set the current editline file pointer for ‘‘input’’ fd = 0 , ‘‘output’’ fd = 1 , or ‘‘error’’ fd = 2

from fp.

el_get()
Get editline parameters. op determines which parameter to retrieve into result. Returns 0 if

successful, -1 otherwise.

The following values for op are supported, along with actual type of result :

EL_PROMPT , char *(*f)(EditLine *), Fa char *c

Set f to a pointer to the function that displays the prompt. If c is not NULL , set it to the

start/stop literal prompt character.

EL_RPROMPT , char *(*f)(EditLine *), Fa char *c

Set f to a pointer to the function that displays the prompt. If c is not NULL , set it to the

start/stop literal prompt character.

EL_EDITOR , const char **n

Set the name of the editor in n, which will be one of ‘‘emacs’’ or ‘‘vi’’.

EL_GETTC , const char *name, Fa void *value

If name is a valid termcap(5) capability set value to the current value of that capability.

EL_SIGNAL , int *s

Set s to non-zero if editline has installed private signal handlers (see el_get() above).

EL_EDITMODE , int *c

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

Set c to non-zero if editing is enabled.

EL_GETCFN , el_rfunc_t *f

Set f to a pointer to the function that reads characters, or to EL_BUILTIN_GETCFN if the

builtin function is in use.

EL_CLIENTDATA , void **data

Set data to the previously registered client data set by an el_set() call.

EL_UNBUFFERED , int *c

Set c to non-zero if unbuffered mode is enabled.

EL_SAFEREAD , int *c

Set c to non-zero if safe read is set.

EL_GETFP , int fd", Fa FILE **fp

Set fp to the current editline file pointer for ‘‘input’’ fd = 0 , ‘‘output’’ fd = 1 , or ‘‘error’’ fd

= 2 .

el_source()

Initialize editline by reading the contents of file. el_parse() is called for each line in file. If file is

NULL , try $EDITRC and if that is not set $HOME/.editrc. Refer to editrc(5) for details on the

format of file. el_source() returns 0 on success and -1 on error.

el_resize()

Must be called if the terminal size changes. If EL_SIGNAL has been set with el_set(), then this is

done automatically. Otherwise, it’s the responsibility of the application to call el_resize() on the

appropriate occasions.

el_cursor()

Move the cursor to the right (if positive) or to the left (if negative) count characters. Returns the

resulting offset of the cursor from the beginning of the line.

el_line()

Return the editing information for the current line in a LineInfo structure, which is defined as

follows:

typedef struct lineinfo {

const char *buffer; /* address of buffer */

const char *cursor; /* address of cursor */

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

const char *lastchar; /* address of last character */

} LineInfo;

buffer is not NUL terminated. This function may be called after el_gets() to obtain the LineInfo

structure pertaining to line returned by that function, and from within user defined functions added

with EL_ADDFN .

el_insertstr()

Insert str into the line at the cursor. Returns -1 if str is empty or won’t fit, and 0 otherwise.

el_deletestr()

Delete count characters before the cursor.

HISTORY LIST FUNCTIONS
The history functions use a common data structure, History, which is created by history_init() and freed

by history_end().

The following functions are available:

history_init()
Initialize the history list, and return a data structure to be used by all other history list functions, or

NULL on failure.

history_end()

Clean up and finish with h, assumed to have been created with history_init().

history()

Perform operation op on the history list, with optional arguments as needed by the operation. ev

is changed accordingly to operation. The following values for op are supported, along with the

required argument list:

H_SETSIZE , int size

Set size of history to size elements.

H_GETSIZE

Get number of events currently in history.

H_END

Cleans up and finishes with h, assumed to be created with history_init().

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

H_CLEAR

Clear the history.

H_FUNC , void *ptr, Fa history_gfun_t first,

Fa "history_gfun_t next" , Fa "history_gfun_t last" , Fa "history_gfun_t prev" , Fa

"history_gfun_t curr" , Fa "history_sfun_t set" , Fa "history_vfun_t clear" , Fa "history_efun_t

enter" , Fa "history_efun_t add" Define functions to perform various history operations. ptr is

the argument given to a function when it’s invoked.

H_FIRST

Return the first element in the history.

H_LAST

Return the last element in the history.

H_PREV

Return the previous element in the history. It is newer than the current one.

H_NEXT

Return the next element in the history. It is older than the current one.

H_CURR

Return the current element in the history.

H_SET , int position

Set the cursor to point to the requested element.

H_ADD , const char *str

Append str to the current element of the history, or perform the H_ENTER operation with

argument str if there is no current element.

H_APPEND , const char *str

Append str to the last new element of the history.

H_ENTER , const char *str

Add str as a new element to the history and, if necessary, removing the oldest entry to keep

the list to the created size. If H_SETUNIQUE has been called with a non-zero argument, the

element will not be entered into the history if its contents match the ones of the current history

element. If the element is entered history() returns 1; if it is ignored as a duplicate returns 0.

Finally history() returns -1 if an error occurred.

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

H_PREV_STR , const char *str

Return the closest previous event that starts with str.

H_NEXT_STR , const char *str

Return the closest next event that starts with str.

H_PREV_EVENT , int e

Return the previous event numbered e.

H_NEXT_EVENT , int e

Return the next event numbered e.

H_LOAD , const char *file

Load the history list stored in file.

H_SAVE , const char *file

Save the history list to file.

H_SAVE_FP , FILE *fp

Save the history list to the opened

FILE

pointer fp.

H_NSAVE_FP , size_t n, Fa FILE *fp

Save the last

n

history entries to the opened

FILE

pointer fp.

H_SETUNIQUE , int unique

Set flag that adjacent identical event strings should not be entered into the history.

H_GETUNIQUE

Retrieve the current setting if adjacent identical elements should be entered into the history.

H_DEL , int e

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

Delete the event numbered e. This function is only provided for readline compatibility. The

caller is responsible for free’ing the string in the returned HistEvent.

history(); returns >= 0 if the operation op succeeds. Otherwise, -1 is returned and ev is updated to

contain more details about the error.

TOKENIZATION FUNCTIONS
The tokenization functions use a common data structure, Tokenizer, which is created by tok_init() and

freed by tok_end().

The following functions are available:

tok_init()
Initialize the tokenizer, and return a data structure to be used by all other tokenizer functions. IFS

contains the Input Field Separators, which defaults to <space ,> <tab ,> and <newline> if NULL .

tok_end()

Clean up and finish with t, assumed to have been created with tok_init().

tok_reset()
Reset the tokenizer state. Use after a line has been successfully tokenized by tok_line() or

tok_str() and before a new line is to be tokenized.

tok_line()

Tokenize li, If successful, modify: argv to contain the words, argc to contain the number of

words, cursorc (if not NULL) to contain the index of the word containing the cursor, and cursoro

(if not NULL) to contain the offset within argv[cursorc] of the cursor.

Returns 0 if successful, -1 for an internal error, 1 for an unmatched single quote, 2 for an

unmatched double quote, and 3 for a backslash quoted <newline .> A positive exit code indicates

that another line should be read and tokenization attempted again.

tok_str()

A simpler form of tok_line(;) str is a NUL terminated string to tokenize.

SEE ALSO
sh(1), signal(3), termcap(3), editrc(5), termcap(5), editline(7)

HISTORY
The editline library first appeared in Bx 4.4 . CC_REDISPLAY appeared in Nx 1.3 .

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

CC_REFRESH_BEEP , EL_EDITMODE and the readline emulation appeared in Nx 1.4 .

EL_RPROMPT appeared in Nx 1.5 .

AUTHORS
-nosplit The editline library was written by

Christos Zoulas .

Luke Mewburn wrote this manual and implemented CC_REDISPLAY , CC_REFRESH_BEEP ,

EL_EDITMODE , and EL_RPROMPT .

Jaromir Dolecek implemented the readline emulation.

Johny Mattsson implemented wide-character support.

BUGS
At this time, it is the responsibility of the caller to check the result of the EL_EDITMODE operation of

el_get() (after an el_source() or el_parse()) to determine if editline should be used for further input.

I.e., EL_EDITMODE is purely an indication of the result of the most recent editrc(5) edit command.

EDITLINE(3) FreeBSD Library Functions Manual EDITLINE(3)

August 15, 2021 EDITLINE(3)

