
NAME
eventtimers - kernel event timers subsystem

SYNOPSIS
#include <sys/timeet.h>

struct eventtimer;

typedef int et_start_t(struct eventtimer *et,

sbintime_t first, sbintime_t period);

typedef int et_stop_t(struct eventtimer *et);

typedef void et_event_cb_t(struct eventtimer *et, void *arg);

typedef int et_deregister_cb_t(struct eventtimer *et, void *arg);

struct eventtimer {

SLIST_ENTRY(eventtimer) et_all;

char *et_name;

int et_flags;

#define ET_FLAGS_PERIODIC 1

#define ET_FLAGS_ONESHOT 2

#define ET_FLAGS_PERCPU 4

#define ET_FLAGS_C3STOP 8

#define ET_FLAGS_POW2DIV 16

int et_quality;

int et_active;

uint64_t et_frequency;

sbintime_t et_min_period;

sbintime_t et_max_period;

et_start_t *et_start;

et_stop_t *et_stop;

et_event_cb_t *et_event_cb;

et_deregister_cb_t *et_deregister_cb;

void *et_arg;

void *et_priv;

struct sysctl_oid *et_sysctl;

};

int

et_register(struct eventtimer *et);

int

EVENTTIMERS(9) FreeBSD Kernel Developer’s Manual EVENTTIMERS(9)

FreeBSD 14.0-RELEASE-p11 April 2, 2014 FreeBSD 14.0-RELEASE-p11



et_deregister(struct eventtimer *et);

void

et_change_frequency(struct eventtimer *et, uint64_t newfreq);

ET_LOCK();

ET_UNLOCK();

struct eventtimer *

et_find(const char *name, int check, int want);

int

et_init(struct eventtimer *et, et_event_cb_t *event, et_deregister_cb_t *deregister, void *arg);

int

et_start(struct eventtimer *et, sbintime_t first, sbintime_t period);

int

et_stop(struct eventtimer *et);

int

et_ban(struct eventtimer *et);

int

et_free(struct eventtimer *et);

DESCRIPTION
Event timers are responsible for generating interrupts at specified time or periodically, to run different

time-based events. Subsystem consists of three main parts:

Drivers Manage hardware to generate requested time events.

Consumers sys/kern/kern_clocksource.c uses event timers to supply kernel with hardclock(), statclock()

and profclock() time events.

Glue code sys/sys/timeet.h, sys/kern/kern_et.c provide APIs for event timer drivers and consumers.

DRIVER API
Driver API is built around eventtimer structure. To register its functionality driver allocates that

EVENTTIMERS(9) FreeBSD Kernel Developer’s Manual EVENTTIMERS(9)

FreeBSD 14.0-RELEASE-p11 April 2, 2014 FreeBSD 14.0-RELEASE-p11



structure and calls et_register(). Driver should fill following fields there:

et_name Unique name of the event timer for management purposes.

et_flags Set of flags, describing timer capabilities:

ET_FLAGS_PERIODIC Periodic mode supported.

ET_FLAGS_ONESHOT

One-shot mode supported.

ET_FLAGS_PERCPU Timer is per-CPU.

ET_FLAGS_C3STOP Timer may stop in CPU sleep state.

ET_FLAGS_POW2DIV Timer supports only 2^n divisors.

et_quality Abstract value to certify whether this timecounter is better than the others. Higher value

means better.

et_frequency Timer oscillator’s base frequency, if applicable and known. Used by consumers to

predict set of possible frequencies that could be obtained by dividing it. Should be zero

if not applicable or unknown.

et_min_period, et_max_period

Minimal and maximal reliably programmable time periods.

et_start Driver’s timer start function pointer.

et_stop Driver’s timer stop function pointer.

et_priv Driver’s private data storage.

After the event timer functionality is registered, it is controlled via et_start and et_stop methods.

et_start method is called to start the specified event timer. The last two arguments are used to specify

time when events should be generated. first argument specifies time period before the first event

generated. In periodic mode NULL value specifies that first period is equal to the period argument

value. period argument specifies the time period between following events for the periodic mode. The

NULL value there specifies the one-shot mode. At least one of these two arguments should be not

NULL. When event time arrive, driver should call et_event_cb callback function, passing et_arg as the

second argument. et_stop method is called to stop the specified event timer. For the per-CPU event

timers et_start and et_stop methods control timers associated with the current CPU.

Driver may deregister its functionality by calling et_deregister().

EVENTTIMERS(9) FreeBSD Kernel Developer’s Manual EVENTTIMERS(9)

FreeBSD 14.0-RELEASE-p11 April 2, 2014 FreeBSD 14.0-RELEASE-p11



If the frequency of the clock hardware can change while it is running (for example, during power-saving

modes), the driver must call et_change_frequency() on each change. If the given event timer is the

active timer, et_change_frequency() stops the timer on all CPUs, updates et->frequency, then restarts the

timer on all CPUs so that all current events are rescheduled using the new frequency. If the given timer

is not currently active, et_change_frequency() simply updates et->frequency.

CONSUMER API
et_find() allows consumer to find available event timer, optionally matching specific name and/or

capability flags. Consumer may read returned eventtimer structure, but should not modify it. When

wanted event timer is found, et_init() should be called for it, submitting event and optionally deregister

callbacks functions, and the opaque argument arg. That argument will be passed as argument to the

callbacks. Event callback function will be called on scheduled time events. It is called from the

hardware interrupt context, so no sleep is permitted there. Deregister callback function may be called to

report consumer that the event timer functionality is no longer available. On this call, consumer should

stop using event timer before the return.

After the timer is found and initialized, it can be controlled via et_start() and et_stop(). The arguments

are the same as described in driver API. Per-CPU event timers can be controlled only from specific

CPUs.

et_ban() allows consumer to mark event timer as broken via clearing both one-shot and periodic

capability flags, if it was somehow detected. et_free() is the opposite to et_init(). It releases the event

timer for other consumers use.

ET_LOCK() and ET_UNLOCK() macros should be used to manage mutex(9) lock around et_find(),

et_init() and et_free() calls to serialize access to the list of the registered event timers and the pointers

returned by et_find(). et_start() and et_stop() calls should be serialized in consumer’s internal way to

avoid concurrent timer hardware access.

SEE ALSO
eventtimers(4)

AUTHORS
Alexander Motin <mav@FreeBSD.org>

EVENTTIMERS(9) FreeBSD Kernel Developer’s Manual EVENTTIMERS(9)

FreeBSD 14.0-RELEASE-p11 April 2, 2014 FreeBSD 14.0-RELEASE-p11


