
NAME
evp - high-level cryptographic functions

SYNOPSIS
#include <openssl/evp.h>

DESCRIPTION
The EVP library provides a high-level interface to cryptographic functions.

The EVP_SealXXX and EVP_OpenXXX functions provide public key encryption and decryption to

implement digital "envelopes".

The EVP_DigestSignXXX and EVP_DigestVerifyXXX functions implement digital signatures and

Message Authentication Codes (MACs). Also see the older EVP_SignXXX and EVP_VerifyXXX

functions.

Symmetric encryption is available with the EVP_EncryptXXX functions. The EVP_DigestXXX

functions provide message digests.

The EVP_PKEYXXX functions provide a high-level interface to asymmetric algorithms. To create a

new EVP_PKEY see EVP_PKEY_new(3). EVP_PKEYs can be associated with a private key of a

particular algorithm by using the functions described on the EVP_PKEY_fromdata(3) page, or new

keys can be generated using EVP_PKEY_keygen(3). EVP_PKEYs can be compared using

EVP_PKEY_eq(3), or printed using EVP_PKEY_print_private(3). EVP_PKEY_todata(3) can be used

to convert a key back into an OSSL_PARAM(3) array.

The EVP_PKEY functions support the full range of asymmetric algorithm operations:

For key agreement see EVP_PKEY_derive(3)

For signing and verifying see EVP_PKEY_sign(3), EVP_PKEY_verify(3) and

EVP_PKEY_verify_recover(3). However, note that these functions do not perform a digest of the data

to be signed. Therefore, normally you would use the EVP_DigestSignInit(3) functions for this purpose.

For encryption and decryption see EVP_PKEY_encrypt(3) and EVP_PKEY_decrypt(3) respectively.

However, note that these functions perform encryption and decryption only. As public key encryption

is an expensive operation, normally you would wrap an encrypted message in a "digital envelope"

using the EVP_SealInit(3) and EVP_OpenInit(3) functions.

The EVP_BytesToKey(3) function provides some limited support for password based encryption.

Careful selection of the parameters will provide a PKCS#5 PBKDF1 compatible implementation.

However, new applications should not typically use this (preferring, for example, PBKDF2 from

EVP(7ossl) OpenSSL EVP(7ossl)

3.0.11 2023-09-19 EVP(7ossl)



PCKS#5).

The EVP_EncodeXXX and EVP_DecodeXXX functions implement base 64 encoding and decoding.

All the symmetric algorithms (ciphers), digests and asymmetric algorithms (public key algorithms) can

be replaced by ENGINE modules providing alternative implementations. If ENGINE implementations

of ciphers or digests are registered as defaults, then the various EVP functions will automatically use

those implementations automatically in preference to built in software implementations. For more

information, consult the engine(3) man page.

Although low-level algorithm specific functions exist for many algorithms their use is discouraged.

They cannot be used with an ENGINE and ENGINE versions of new algorithms cannot be accessed

using the low-level functions. Also makes code harder to adapt to new algorithms and some options

are not cleanly supported at the low-level and some operations are more efficient using the high-level

interface.

SEE ALSO
EVP_DigestInit(3), EVP_EncryptInit(3), EVP_OpenInit(3), EVP_SealInit(3), EVP_DigestSignInit(3),

EVP_SignInit(3), EVP_VerifyInit(3), EVP_EncodeInit(3), EVP_PKEY_new(3),

EVP_PKEY_fromdata(3), EVP_PKEY_todata(3), EVP_PKEY_keygen(3),

EVP_PKEY_print_private(3), EVP_PKEY_decrypt(3), EVP_PKEY_encrypt(3), EVP_PKEY_sign(3),

EVP_PKEY_verify(3), EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3), EVP_BytesToKey(3),

ENGINE_by_id(3)

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

EVP(7ossl) OpenSSL EVP(7ossl)

3.0.11 2023-09-19 EVP(7ossl)


