
NAME
access, eaccess, faccessat - check accessibility of a file

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int

access(const char *path, int mode);

int

eaccess(const char *path, int mode);

int

faccessat(int fd, const char *path, int mode, int flag);

DESCRIPTION
The access() and eaccess() system calls check the accessibility of the file named by the path argument

for the access permissions indicated by the mode argument. The value of mode is either the bitwise-

inclusive OR of the access permissions to be checked (R_OK for read permission, W_OK for write

permission, and X_OK for execute/search permission), or the existence test (F_OK).

For additional information, see the File Access Permission section of intro(2).

The eaccess() system call uses the effective user ID and the group access list to authorize the request; the

access() system call uses the real user ID in place of the effective user ID, the real group ID in place of

the effective group ID, and the rest of the group access list.

The faccessat() system call is equivalent to access() except in the case where path specifies a relative

path. In this case the file whose accessibility is to be determined is located relative to the directory

associated with the file descriptor fd instead of the current working directory. If faccessat() is passed the

special value AT_FDCWD in the fd parameter, the current working directory is used and the behavior is

identical to a call to access(). Values for flag are constructed by a bitwise-inclusive OR of flags from

the following list, defined in <fcntl.h>:

AT_EACCESS

The checks for accessibility are performed using the effective user and group IDs instead of the

real user and group ID as required in a call to access().

ACCESS(2) FreeBSD System Calls Manual ACCESS(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2021 FreeBSD 14.0-RELEASE-p11



AT_RESOLVE_BENEATH

Only walk paths below the directory specified by the fd descriptor. See the description of the

O_RESOLVE_BENEATH flag in the open(2) manual page.

AT_EMPTY_PATH

If the path argument is an empty string, operate on the file or directory referenced by the

descriptor fd. If fd is equal to AT_FDCWD, operate on the current working directory.

Even if a process’s real or effective user has appropriate privileges and indicates success for X_OK, the

file may not actually have execute permission bits set. Likewise for R_OK and W_OK.

RETURN VALUES
Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

ERRORS
access(), eaccess(), or faccessat() will fail if:

[EINVAL] The value of the mode argument is invalid.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name

exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file presently being

executed.

[EACCES] Permission bits of the file mode do not permit the requested access, or search

permission is denied on a component of the path prefix.

[EFAULT] The path argument points outside the process’s allocated address space.

ACCESS(2) FreeBSD System Calls Manual ACCESS(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2021 FreeBSD 14.0-RELEASE-p11



[EIO] An I/O error occurred while reading from or writing to the file system.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

Also, the faccessat() system call may fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is

neither AT_FDCWD nor a valid file descriptor.

[EINVAL] The value of the flag argument is not valid.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a file

descriptor associated with a directory.

[ENOTCAPABLE] path is an absolute path, or contained a ".." component leading to a directory

outside of the directory hierarchy specified by fd, and the process is in capability

mode.

SEE ALSO
chmod(2), intro(2), stat(2)

STANDARDS
The access() system call is expected to conform to IEEE Std 1003.1-1990 ("POSIX.1"). The faccessat()
system call follows The Open Group Extended API Set 2 specification.

HISTORY
The access() function appeared in Version 7 AT&T UNIX. The faccessat() system call appeared in

FreeBSD 8.0.

SECURITY CONSIDERATIONS
The access() system call is a potential security hole due to race conditions and should never be used.

Set-user-ID and set-group-ID applications should restore the effective user or group ID, and perform

actions directly rather than use access() to simulate access checks for the real user or group ID. The

eaccess() system call likewise may be subject to races if used inappropriately.

access() remains useful for providing clues to users as to whether operations make sense for particular

filesystem objects (e.g. ’delete’ menu item only highlighted in a writable folder ... avoiding

interpretation of the st_mode bits that the application might not understand -- e.g. in the case of AFS). It

also allows a cheaper file existence test than stat(2).

ACCESS(2) FreeBSD System Calls Manual ACCESS(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2021 FreeBSD 14.0-RELEASE-p11


