
NAME
feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetround, fesetround,

fegetenv, feholdexcept, fesetenv, feupdateenv, feenableexcept, fedisableexcept, fegetexcept - floating-

point environment control

LIBRARY
Math Library (libm, -lm)

SYNOPSIS
#include <fenv.h>

#pragma STDC FENV_ACCESS ON

int

feclearexcept(int excepts);

int

fegetexceptflag(fexcept_t *flagp, int excepts);

int

feraiseexcept(int excepts);

int

fesetexceptflag(const fexcept_t *flagp, int excepts);

int

fetestexcept(int excepts);

int

fegetround(void);

int

fesetround(int round);

int

fegetenv(fenv_t *envp);

int

feholdexcept(fenv_t *envp);

FENV(3) FreeBSD Library Functions Manual FENV(3)

FreeBSD 14.0-RELEASE-p11 March 16, 2005 FreeBSD 14.0-RELEASE-p11

int

fesetenv(const fenv_t *envp);

int

feupdateenv(const fenv_t *envp);

int

feenableexcept(int excepts);

int

fedisableexcept(int excepts);

int

fegetexcept(void);

DESCRIPTION
The <fenv.h> routines manipulate the floating-point environment, which includes the exception flags

and rounding modes defined in IEEE Std 754-1985.

Exceptions
Exception flags are set as side-effects of floating-point arithmetic operations and math library routines,

and they remain set until explicitly cleared. The following macros expand to bit flags of type int

representing the five standard floating-point exceptions.

FE_DIVBYZERO A divide-by-zero exception occurs when the exact result of a computation is infinite

(according to the limit definition). For example, dividing a finite non-zero number

by zero or computing log(0) raises a divide-by-zero exception.

FE_INEXACT An inexact exception is raised whenever there is a loss of accuracy due to rounding.

FE_INVALID Invalid operation exceptions occur when a program attempts to perform calculations

for which there is no reasonable representable answer. For instance, subtraction of

like-signed infinities, division of zero by zero, ordered comparison involving NaNs,

and taking the real square root of a negative number are all invalid operations.

FE_OVERFLOW In contrast with divide-by-zero, an overflow exception occurs when an infinity is

produced because the magnitude of the exact result is finite but too large to fit in the

destination type. For example, computing DBL_MAX * 2 raises an overflow

exception.

FENV(3) FreeBSD Library Functions Manual FENV(3)

FreeBSD 14.0-RELEASE-p11 March 16, 2005 FreeBSD 14.0-RELEASE-p11

FE_UNDERFLOW

Underflow occurs when the result of a computation loses precision because it is too

close to zero. The result is a subnormal number or zero.

Additionally, the FE_ALL_EXCEPT macro expands to the bitwise OR of the above flags and any

architecture-specific flags. Combinations of these flags are passed to the feclearexcept(),
fegetexceptflag(), feraiseexcept(), fesetexceptflag(), and fetestexcept() functions to clear, save, raise,

restore, and examine the processor’s floating-point exception flags, respectively.

Exceptions may be unmasked with feenableexcept() and masked with fedisableexcept(). Unmasked

exceptions cause a trap when they are produced, and all exceptions are masked by default. The current

mask can be tested with fegetexcept().

Rounding Modes
IEEE Std 754-1985 specifies four rounding modes. These modes control the direction in which results

are rounded from their exact values in order to fit them into binary floating-point variables. The four

modes correspond with the following symbolic constants.

FE_TONEAREST Results are rounded to the closest representable value. If the exact result is

exactly half way between two representable values, the value whose last binary

digit is even (zero) is chosen. This is the default mode.

FE_DOWNWARD Results are rounded towards negative infinity.

FE_UPWARD Results are rounded towards positive infinity.

FE_TOWARDZERO Results are rounded towards zero.

The fegetround() and fesetround() functions query and set the rounding mode.

Environment Control
The fegetenv() and fesetenv() functions save and restore the floating-point environment, which includes

exception flags, the current exception mask, the rounding mode, and possibly other implementation-

specific state. The feholdexcept() function behaves like fegetenv(), but with the additional effect of

clearing the exception flags and installing a non-stop mode. In non-stop mode, floating-point operations

will set exception flags as usual, but no SIGFPE signals will be generated as a result. Non-stop mode is

the default, but it may be altered by feenableexcept() and fedisableexcept(). The feupdateenv() function

restores a saved environment similarly to fesetenv(), but it also re-raises any floating-point exceptions

from the old environment.

FENV(3) FreeBSD Library Functions Manual FENV(3)

FreeBSD 14.0-RELEASE-p11 March 16, 2005 FreeBSD 14.0-RELEASE-p11

The macro FE_DFL_ENV expands to a pointer to the default environment.

EXAMPLES
The following routine computes the square root function. It explicitly raises an invalid exception on

appropriate inputs using feraiseexcept(). It also defers inexact exceptions while it computes

intermediate values, and then it allows an inexact exception to be raised only if the final answer is

inexact.

#pragma STDC FENV_ACCESS ON

double sqrt(double n) {

double x = 1.0;

fenv_t env;

if (isnan(n) || n < 0.0) {

feraiseexcept(FE_INVALID);

return (NAN);

}

if (isinf(n) || n == 0.0)

return (n);

feholdexcept(&env);

while (fabs((x * x) - n) > DBL_EPSILON * 2 * x)

x = (x / 2) + (n / (2 * x));

if (x * x == n)

feclearexcept(FE_INEXACT);

feupdateenv(&env);

return (x);

}

SEE ALSO
cc(1), feclearexcept(3), fedisableexcept(3), feenableexcept(3), fegetenv(3), fegetexcept(3),

fegetexceptflag(3), fegetround(3), feholdexcept(3), feraiseexcept(3), fesetenv(3), fesetexceptflag(3),

fesetround(3), fetestexcept(3), feupdateenv(3), fpgetprec(3), fpsetprec(3)

STANDARDS
Except as noted below, <fenv.h> conforms to ISO/IEC 9899:1999 ("ISO C99"). The feenableexcept(),
fedisableexcept(), and fegetexcept() routines are extensions.

HISTORY
The <fenv.h> header first appeared in FreeBSD 5.3. It supersedes the non-standard routines defined in

<ieeefp.h> and documented in fpgetround(3).

FENV(3) FreeBSD Library Functions Manual FENV(3)

FreeBSD 14.0-RELEASE-p11 March 16, 2005 FreeBSD 14.0-RELEASE-p11

CAVEATS
The FENV_ACCESS pragma can be enabled with

#pragma STDC FENV_ACCESS ON

and disabled with the

#pragma STDC FENV_ACCESS OFF

directive. This lexically-scoped annotation tells the compiler that the program may access the floating-

point environment, so optimizations that would violate strict IEEE-754 semantics are disabled. If

execution reaches a block of code for which FENV_ACCESS is off, the floating-point environment will

become undefined.

BUGS
The FENV_ACCESS pragma is unimplemented in the system compiler. However, non-constant

expressions generally produce the correct side-effects at low optimization levels.

FENV(3) FreeBSD Library Functions Manual FENV(3)

FreeBSD 14.0-RELEASE-p11 March 16, 2005 FreeBSD 14.0-RELEASE-p11

