
NAME
execve, fexecve - execute a file

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int

execve(const char *path, char *const argv[], char *const envp[]);

int

fexecve(int fd, char *const argv[], char *const envp[]);

DESCRIPTION
The execve() system call transforms the calling process into a new process. The new process is

constructed from an ordinary file, whose name is pointed to by path, called the new process file. The

fexecve() system call is equivalent to execve() except that the file to be executed is determined by the

file descriptor fd instead of a path. This file is either an executable object file, or a file of data for an

interpreter. An executable object file consists of an identifying header, followed by pages of data

representing the initial program (text) and initialized data pages. Additional pages may be specified by

the header to be initialized with zero data; see elf(5) and a.out(5).

An interpreter file begins with a line of the form:

#! interpreter [arg]

When an interpreter file is execve’d, the system actually execve’s the specified interpreter. If the

optional arg is specified, it becomes the first argument to the interpreter, and the name of the originally

execve’d file becomes the second argument; otherwise, the name of the originally execve’d file becomes

the first argument. The original arguments are shifted over to become the subsequent arguments. The

zeroth argument is set to the specified interpreter.

The argument argv is a pointer to a null-terminated array of character pointers to null-terminated

character strings. These strings construct the argument list to be made available to the new process. At

least one argument must be present in the array; by custom, the first element should be the name of the

executed program (for example, the last component of path).

The argument envp is also a pointer to a null-terminated array of character pointers to null-terminated

EXECVE(2) FreeBSD System Calls Manual EXECVE(2)

FreeBSD 14.0-RELEASE-p11 January 26, 2022 FreeBSD 14.0-RELEASE-p11

strings. A pointer to this array is normally stored in the global variable environ. These strings pass

information to the new process that is not directly an argument to the command (see environ(7)).

File descriptors open in the calling process image remain open in the new process image, except for

those for which the close-on-exec flag is set (see close(2) and fcntl(2)). Descriptors that remain open are

unaffected by execve(). If any of the standard descriptors (0, 1, and/or 2) are closed at the time execve()

is called, and the process will gain privilege as a result of set-id semantics, those descriptors will be re-

opened automatically. No programs, whether privileged or not, should assume that these descriptors

will remain closed across a call to execve().

Signals set to be ignored in the calling process are set to be ignored in the new process. Signals which

are set to be caught in the calling process image are set to default action in the new process image.

Blocked signals remain blocked regardless of changes to the signal action. The signal stack is reset to be

undefined (see sigaction(2) for more information).

If the set-user-ID mode bit of the new process image file is set (see chmod(2)), the effective user ID of

the new process image is set to the owner ID of the new process image file. If the set-group-ID mode bit

of the new process image file is set, the effective group ID of the new process image is set to the group

ID of the new process image file. (The effective group ID is the first element of the group list.) The real

user ID, real group ID and other group IDs of the new process image remain the same as the calling

process image. After any set-user-ID and set-group-ID processing, the effective user ID is recorded as

the saved set-user-ID, and the effective group ID is recorded as the saved set-group-ID. These values

may be used in changing the effective IDs later (see setuid(2)).

The set-ID bits are not honored if the respective file system has the nosuid option enabled or if the new

process file is an interpreter file. Syscall tracing is disabled if effective IDs are changed.

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)

parent process ID see getppid(2)

process group ID see getpgrp(2)

access groups see getgroups(2)

working directory see chdir(2)

root directory see chroot(2)

control terminal see termios(4)

resource usages see getrusage(2)

interval timers see getitimer(2)

resource limits see getrlimit(2)

file mode mask see umask(2)

EXECVE(2) FreeBSD System Calls Manual EXECVE(2)

FreeBSD 14.0-RELEASE-p11 January 26, 2022 FreeBSD 14.0-RELEASE-p11

signal mask see sigaction(2), sigprocmask(2)

When a program is executed as a result of an execve() system call, it is entered as follows:

main(argc, argv, envp)

int argc;

char **argv, **envp;

where argc is the number of elements in argv (the ‘‘arg count’’) and argv points to the array of character

pointers to the arguments themselves.

The fexecve() ignores the file offset of fd. Since execute permission is checked by fexecve(), the file

descriptor fd need not have been opened with the O_EXEC flag. However, if the file to be executed

denies read permission for the process preparing to do the exec, the only way to provide the fd to

fexecve() is to use the O_EXEC flag when opening fd. Note that the file to be executed can not be open

for writing.

RETURN VALUES
As the execve() system call overlays the current process image with a new process image the successful

call has no process to return to. If execve() does return to the calling process an error has occurred; the

return value will be -1 and the global variable errno is set to indicate the error.

ERRORS
The execve() system call will fail and return to the calling process if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name

exceeded 1023 characters.

[ENOEXEC] When invoking an interpreted script, the length of the first line, inclusive of the #!
prefix and terminating newline, exceeds MAXSHELLCMDLEN characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for a component of the path prefix.

EXECVE(2) FreeBSD System Calls Manual EXECVE(2)

FreeBSD 14.0-RELEASE-p11 January 26, 2022 FreeBSD 14.0-RELEASE-p11

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[EINVAL] argv did not contain at least one element.

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid

magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently open

for writing by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the imposed

maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’ argument list is larger than the system-

imposed limit. This limit is specified by the sysctl(3) MIB variable

KERN_ARGMAX.

[EFAULT] The new process file is not as long as indicated by the size values in its header.

[EFAULT] The path, argv, or envp arguments point to an illegal address.

[EIO] An I/O error occurred while reading from the file system.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

In addition, the fexecve() will fail and return to the calling process if:

[EBADF] The fd argument is not a valid file descriptor open for executing.

SEE ALSO
ktrace(1), _exit(2), fork(2), open(2), execl(3), exit(3), sysctl(3), a.out(5), elf(5), fdescfs(5), environ(7),

mount(8)

STANDARDS
The execve() system call conforms to IEEE Std 1003.1-2001 ("POSIX.1"), with the exception of

reopening descriptors 0, 1, and/or 2 in certain circumstances. A future update of the Standard is

expected to require this behavior, and it may become the default for non-privileged processes as well.

The support for executing interpreted programs is an extension. The fexecve() system call conforms to

EXECVE(2) FreeBSD System Calls Manual EXECVE(2)

FreeBSD 14.0-RELEASE-p11 January 26, 2022 FreeBSD 14.0-RELEASE-p11

The Open Group Extended API Set 2 specification.

HISTORY
The execve() system call appeared in Version 7 AT&T UNIX. The fexecve() system call appeared in

FreeBSD 8.0.

CAVEATS
If a program is setuid to a non-super-user, but is executed when the real uid is ‘‘root’’, then the program

has some of the powers of a super-user as well.

When executing an interpreted program through fexecve(), kernel supplies /dev/fd/n as a second

argument to the interpreter, where n is the file descriptor passed in the fd argument to fexecve(). For this

construction to work correctly, the fdescfs(5) filesystem shall be mounted on /dev/fd.

EXECVE(2) FreeBSD System Calls Manual EXECVE(2)

FreeBSD 14.0-RELEASE-p11 January 26, 2022 FreeBSD 14.0-RELEASE-p11

