
NAME
fork - create a new process

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t

fork(void);

pid_t

_Fork(void);

DESCRIPTION
The fork() function causes creation of a new process. The new process (child process) is an exact copy

of the calling process (parent process) except for the following:

+o The child process has a unique process ID.

+o The child process has a different parent process ID (i.e., the process ID of the parent process).

+o The child process has its own copy of the parent’s descriptors, except for descriptors returned

by kqueue(2), which are not inherited from the parent process. These descriptors reference the

same underlying objects, so that, for instance, file pointers in file objects are shared between

the child and the parent, so that an lseek(2) on a descriptor in the child process can affect a

subsequent read(2) or write(2) by the parent. This descriptor copying is also used by the shell

to establish standard input and output for newly created processes as well as to set up pipes.

+o The child process’ resource utilizations are set to 0; see setrlimit(2).

+o All interval timers are cleared; see setitimer(2).

+o The robust mutexes list (see pthread_mutexattr_setrobust(3)) is cleared for the child.

+o The atfork handlers established with the pthread_atfork(3) function are called as appropriate

before fork in the parent process, and after the child is created, in parent and child.

+o The child process has only one thread, corresponding to the calling thread in the parent

FORK(2) FreeBSD System Calls Manual FORK(2)

FreeBSD 14.0-RELEASE-p11 August 5, 2021 FreeBSD 14.0-RELEASE-p11

process. If the process has more than one thread, locks and other resources held by the other

threads are not released and therefore only async-signal-safe functions (see sigaction(2)) are

guaranteed to work in the child process until a call to execve(2) or a similar function. The

FreeBSD implementation of fork() provides a usable malloc(3), and rtld(1) services in the

child process.

The fork() function is not async-signal safe and creates a cancellation point in the parent process. It

cannot be safely used from signal handlers, and the atfork handlers established by pthread_atfork(3) do

not need to be async-signal safe either.

The _Fork() function creates a new process, similarly to fork(), but it is async-signal safe. _Fork() does

not call atfork handlers, and does not create a cancellation point. It can be used safely from signal

handlers, but then no userspace services (malloc(3) or rtld(1)) are available in the child if forked from

multi-threaded parent. In particular, if using dynamic linking, all dynamic symbols used by the child

after _Fork() must be pre-resolved. Note: resolving can be done globally by specifying the

LD_BIND_NOW environment variable to the dynamic linker, or per-binary by passing the -z now

option to the static linker ld(1), or by using each symbol before the _Fork() call to force the binding.

RETURN VALUES
Upon successful completion, fork() and _Fork() return a value of 0 to the child process and return the

process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent

process, no child process is created, and the global variable errno is set to indicate the error.

EXAMPLES
The following example shows a common pattern of how fork() is used in practice.

#include <err.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int

main(void)

{

pid_t pid;

/*

* If child is expected to use stdio(3), state of

* the reused io streams must be synchronized between

* parent and child, to avoid double output and other

FORK(2) FreeBSD System Calls Manual FORK(2)

FreeBSD 14.0-RELEASE-p11 August 5, 2021 FreeBSD 14.0-RELEASE-p11

* possible issues.

*/

fflush(stdout);

switch (pid = fork()) {

case -1:

err(1, "Failed to fork");

case 0:

printf("Hello from child process!\n");

/*

* Since we wrote into stdout, child needs to use

* exit(3) and not _exit(2). This causes handlers

* registered with atexit(3) to be called twice,

* once in parent, and once in the child. If such

* behavior is undesirable, consider

* terminating child with _exit(2) or _Exit(3).

*/

exit(0);

default:

break;

}

printf("Hello from parent process (child’s PID: %d)!\n", pid);

return (0);

}

The output of such a program is along the lines of:

Hello from parent process (child’s PID: 27804)!

Hello from child process!

ERRORS
The fork() system call will fail and no child process will be created if:

[EAGAIN] The system-imposed limit on the total number of processes under execution

would be exceeded. The limit is given by the sysctl(3) MIB variable

KERN_MAXPROC. (The limit is actually ten less than this except for the super

user).

FORK(2) FreeBSD System Calls Manual FORK(2)

FreeBSD 14.0-RELEASE-p11 August 5, 2021 FreeBSD 14.0-RELEASE-p11

[EAGAIN] The user is not the super user, and the system-imposed limit on the total number

of processes under execution by a single user would be exceeded. The limit is

given by the sysctl(3) MIB variable KERN_MAXPROCPERUID.

[EAGAIN] The user is not the super user, and the soft resource limit corresponding to the

resource argument RLIMIT_NPROC would be exceeded (see getrlimit(2)).

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO
execve(2), rfork(2), setitimer(2), setrlimit(2), sigaction(2), vfork(2), wait(2), pthread_atfork(3)

HISTORY
The fork() function appeared in Version 1 AT&T UNIX.

The _Fork() function was defined by Austin Group together with the removal of a requirement that the

fork() implementation must be async-signal safe. The _Fork() function appeared in FreeBSD 14.0.

FORK(2) FreeBSD System Calls Manual FORK(2)

FreeBSD 14.0-RELEASE-p11 August 5, 2021 FreeBSD 14.0-RELEASE-p11

