
NAME
getaddrinfo, freeaddrinfo - socket address structure to host and service name

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int

getaddrinfo(const char *hostname, const char *servname, const struct addrinfo *hints,

struct addrinfo **res);

void

freeaddrinfo(struct addrinfo *ai);

DESCRIPTION
The getaddrinfo() function is used to get a list of addresses and port numbers for host hostname and

service servname. It is a replacement for and provides more flexibility than the gethostbyname(3) and

getservbyname(3) functions.

The hostname and servname arguments are either pointers to NUL-terminated strings or the null pointer.

An acceptable value for hostname is either a valid host name or a numeric host address string consisting

of a dotted decimal IPv4 address, an IPv6 address, or a UNIX-domain address. The servname is either a

decimal port number or a service name listed in services(5). At least one of hostname and servname

must be non-null.

hints is an optional pointer to a struct addrinfo, as defined by <netdb.h>:

struct addrinfo {

int ai_flags; /* AI_PASSIVE, AI_CANONNAME, .. */

int ai_family; /* AF_xxx */

int ai_socktype; /* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

socklen_t ai_addrlen; /* length of ai_addr */

char *ai_canonname; /* canonical name for hostname */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

};

This structure can be used to provide hints concerning the type of socket that the caller supports or

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



wishes to use. The caller can supply the following structure elements in hints:

ai_family The address family that should be used. When ai_family is set to AF_UNSPEC, it

means the caller will accept any address family supported by the operating system.

ai_socktype Denotes the type of socket that is wanted: SOCK_STREAM, SOCK_DGRAM,

SOCK_SEQPACKET, or SOCK_RAW. When ai_socktype is zero the caller will

accept any socket type.

ai_protocol Indicates which transport protocol is desired, IPPROTO_UDP, IPPROTO_TCP,

IPPROTO_SCTP, or IPPROTO_UDPLITE. If ai_protocol is zero the caller will accept

any protocol.

ai_flags The ai_flags field to which the hints parameter points shall be set to zero or be the

bitwise-inclusive OR of one or more of the values AI_ADDRCONFIG, AI_ALL,

AI_CANONNAME, AI_NUMERICHOST, AI_NUMERICSERV, AI_PASSIVE and

AI_V4MAPPED. For a UNIX-domain address, ai_flags is ignored.

AI_ADDRCONFIG If the AI_ADDRCONFIG bit is set, IPv4 addresses shall be

returned only if an IPv4 address is configured on the local

system, and IPv6 addresses shall be returned only if an IPv6

address is configured on the local system.

AI_ALL If the AI_ALL flag is used with the AI_V4MAPPED flag, then

getaddrinfo() shall return all matching IPv6 and IPv4

addresses.

For example, when using the DNS, queries are made for both

AAAA records and A records, and getaddrinfo() returns the

combined results of both queries. Any IPv4 addresses found

are returned as IPv4-mapped IPv6 addresses.

The AI_ALL flag without the AI_V4MAPPED flag is ignored.

AI_CANONNAME If the AI_CANONNAME bit is set, a successful call to

getaddrinfo() will return a NUL-terminated string containing

the canonical name of the specified hostname in the

ai_canonname element of the first addrinfo structure returned.

AI_NUMERICHOST If the AI_NUMERICHOST bit is set, it indicates that

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



hostname should be treated as a numeric string defining an

IPv4 or IPv6 address and no name resolution should be

attempted.

AI_NUMERICSERV If the AI_NUMERICSERV bit is set, then a non-null

servname string supplied shall be a numeric port string.

Otherwise, an EAI_NONAME error shall be returned. This bit

shall prevent any type of name resolution service (for example,

NIS+) from being invoked.

AI_PASSIVE If the AI_PASSIVE bit is set it indicates that the returned

socket address structure is intended for use in a call to bind(2).

In this case, if the hostname argument is the null pointer, then

the IP address portion of the socket address structure will be

set to INADDR_ANY for an IPv4 address or

IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set, the returned socket address

structure will be ready for use in a call to connect(2) for a

connection-oriented protocol or connect(2), sendto(2), or

sendmsg(2) if a connectionless protocol was chosen. The IP

address portion of the socket address structure will be set to

the loopback address if hostname is the null pointer and

AI_PASSIVE is not set.

AI_V4MAPPED If the AI_V4MAPPED flag is specified along with an

ai_family of AF_INET6, then getaddrinfo() shall return

IPv4-mapped IPv6 addresses on finding no matching IPv6

addresses ( ai_addrlen shall be 16).

For example, when using the DNS, if no AAAA records are

found then a query is made for A records and any found are

returned as IPv4-mapped IPv6 addresses.

The AI_V4MAPPED flag shall be ignored unless ai_family

equals AF_INET6.

All other elements of the addrinfo structure passed via hints must be zero or the null pointer.

If hints is the null pointer, getaddrinfo() behaves as if the caller provided a struct addrinfo with ai_family

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



set to AF_UNSPEC and all other elements set to zero or NULL.

After a successful call to getaddrinfo(), *res is a pointer to a linked list of one or more addrinfo

structures. The list can be traversed by following the ai_next pointer in each addrinfo structure until a

null pointer is encountered. Each returned addrinfo structure contains three members that are suitable

for a call to socket(2): ai_family, ai_socktype, and ai_protocol. For each addrinfo structure in the list,

the ai_addr member points to a filled-in socket address structure of length ai_addrlen.

This implementation of getaddrinfo() allows numeric IPv6 address notation with scope identifier, as

documented in chapter 11 of RFC 4007. By appending the percent character and scope identifier to

addresses, one can fill the sin6_scope_id field for addresses. This would make management of scoped

addresses easier and allows cut-and-paste input of scoped addresses.

At this moment the code supports only link-local addresses with the format. The scope identifier is

hardcoded to the name of the hardware interface associated with the link (such as ne0). An example is

"fe80::1%ne0", which means "fe80::1 on the link associated with the ne0 interface".

The current implementation assumes a one-to-one relationship between the interface and link, which is

not necessarily true from the specification.

All of the information returned by getaddrinfo() is dynamically allocated: the addrinfo structures

themselves as well as the socket address structures and the canonical host name strings included in the

addrinfo structures.

Memory allocated for the dynamically allocated structures created by a successful call to getaddrinfo() is

released by the freeaddrinfo() function. The ai pointer should be a addrinfo structure created by a call to

getaddrinfo().

IMPLEMENTATION NOTES
The behavior of freeaddrinfo(NULL) is left unspecified by both Version 4 of the Single UNIX

Specification ("SUSv4") and RFC 3493. The current implementation ignores a NULL argument for

compatibility with programs that rely on the implementation details of other operating systems.

RETURN VALUES
getaddrinfo() returns zero on success or one of the error codes listed in gai_strerror(3) if an error occurs.

EXAMPLES
The following code tries to connect to "www.kame.net" service "http" via a stream socket. It loops

through all the addresses available, regardless of address family. If the destination resolves to an IPv4

address, it will use an AF_INET socket. Similarly, if it resolves to IPv6, an AF_INET6 socket is used.

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



Observe that there is no hardcoded reference to a particular address family. The code works even if

getaddrinfo() returns addresses that are not IPv4/v6.

struct addrinfo hints, *res, *res0;

int error;

int s;

const char *cause = NULL;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo("www.kame.net", "http", &hints, &res0);

if (error) {

errx(1, "%s", gai_strerror(error));

/* NOTREACHED */

}

s = -1;

for (res = res0; res; res = res->ai_next) {

s = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);

if (s < 0) {

cause = "socket";

continue;

}

if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {

cause = "connect";

close(s);

s = -1;

continue;

}

break; /* okay we got one */

}

if (s < 0) {

err(1, "%s", cause);

/* NOTREACHED */

}

freeaddrinfo(res0);

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



The following example tries to open a wildcard listening socket onto service "http", for all the address

families available.

struct addrinfo hints, *res, *res0;

int error;

int s[MAXSOCK];

int nsock;

const char *cause = NULL;

memset(&hints, 0, sizeof(hints));

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

error = getaddrinfo(NULL, "http", &hints, &res0);

if (error) {

errx(1, "%s", gai_strerror(error));

/* NOTREACHED */

}

nsock = 0;

for (res = res0; res && nsock < MAXSOCK; res = res->ai_next) {

s[nsock] = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);

if (s[nsock] < 0) {

cause = "socket";

continue;

}

if (bind(s[nsock], res->ai_addr, res->ai_addrlen) < 0) {

cause = "bind";

close(s[nsock]);

continue;

}

(void) listen(s[nsock], 5);

nsock++;

}

if (nsock == 0) {

err(1, "%s", cause);

/* NOTREACHED */

}

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



freeaddrinfo(res0);

SEE ALSO
bind(2), connect(2), send(2), socket(2), gai_strerror(3), gethostbyname(3), getnameinfo(3),

getservbyname(3), resolver(3), inet(4), inet6(4), unix(4), hosts(5), resolv.conf(5), services(5),

hostname(7)

R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens, Basic Socket Interface Extensions for

IPv6, RFC 3493, February 2003.

S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill, IPv6 Scoped Address Architecture, RFC

4007, March 2005.

Craig Metz, "Protocol Independence Using the Sockets API", Proceedings of the freenix track: 2000

USENIX annual technical conference, June 2000.

STANDARDS
The getaddrinfo() function is defined by the IEEE Std 1003.1-2004 ("POSIX.1") specification and

documented in RFC 3493, "Basic Socket Interface Extensions for IPv6".

GETADDRINFO(3) FreeBSD Library Functions Manual GETADDRINFO(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11


