
NAME
getipnodebyname, getipnodebyaddr, freehostent - nodename-to-address and address-to-nodename

translation

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

struct hostent *

getipnodebyname(const char *name, int af, int flags, int *error_num);

struct hostent *

getipnodebyaddr(const void *src, size_t len, int af, int *error_num);

void

freehostent(struct hostent *ptr);

DESCRIPTION
The getipnodebyname() and getipnodebyaddr() functions are very similar to gethostbyname(3),

gethostbyname2(3) and gethostbyaddr(3). The functions cover all the functionalities provided by the

older ones, and provide better interface to programmers. The functions require additional arguments, af,

and flags, for specifying address family and operation mode. The additional arguments allow

programmer to get address for a nodename, for specific address family (such as AF_INET or

AF_INET6). The functions also require an additional pointer argument, error_num to return the

appropriate error code, to support thread safe error code returns.

The type and usage of the return value, struct hostent is described in gethostbyname(3).

For getipnodebyname(), the name argument can be either a node name or a numeric address string (i.e.,

a dotted-decimal IPv4 address or an IPv6 hex address). The af argument specifies the address family,

either AF_INET or AF_INET6. The flags argument specifies the types of addresses that are searched

for, and the types of addresses that are returned. We note that a special flags value of AI_DEFAULT

(defined below) should handle most applications. That is, porting simple applications to use IPv6

replaces the call

hptr = gethostbyname(name);

GETIPNODEBYNAME(3) FreeBSD Library Functions Manual GETIPNODEBYNAME(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



with

hptr = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);

Applications desiring finer control over the types of addresses searched for and returned, can specify

other combinations of the flags argument.

A flags of 0 implies a strict interpretation of the af argument:

+o If flags is 0 and af is AF_INET, then the caller wants only IPv4 addresses. A query is made for A

records. If successful, the IPv4 addresses are returned and the h_length member of the hostent

structure will be 4, else the function returns a NULL pointer.

+o If flags is 0 and if af is AF_INET6, then the caller wants only IPv6 addresses. A query is made for

AAAA records. If successful, the IPv6 addresses are returned and the h_length member of the

hostent structure will be 16, else the function returns a NULL pointer.

Other constants can be logically-ORed into the flags argument, to modify the behavior of the function.

+o If the AI_V4MAPPED flag is specified along with an af of AF_INET6, then the caller will accept

IPv4-mapped IPv6 addresses. That is, if no AAAA records are found then a query is made for A

records and any found are returned as IPv4-mapped IPv6 addresses (h_length will be 16). The

AI_V4MAPPED flag is ignored unless af equals AF_INET6.

+o The AI_V4MAPPED_CFG flag is exact same as the AI_V4MAPPED flag only if the kernel

supports IPv4-mapped IPv6 address.

+o If the AI_ALL flag is used in conjunction with the AI_V4MAPPED flag, and only used with the

IPv6 address family. When AI_ALL is logically or’d with AI_V4MAPPED flag then the caller

wants all addresses: IPv6 and IPv4-mapped IPv6. A query is first made for AAAA records and if

successful, the IPv6 addresses are returned. Another query is then made for A records and any found

are returned as IPv4-mapped IPv6 addresses. h_length will be 16. Only if both queries fail does the

function return a NULL pointer. This flag is ignored unless af equals AF_INET6. If both AI_ALL

and AI_V4MAPPED are specified, AI_ALL takes precedence.

+o The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur only if the node

has at least one IPv6 source address configured and a query for A records should occur only if the

node has at least one IPv4 source address configured.

For example, if the node has no IPv6 source addresses configured, and af equals AF_INET6, and the

GETIPNODEBYNAME(3) FreeBSD Library Functions Manual GETIPNODEBYNAME(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



node name being looked up has both AAAA and A records, then: (a) if only AI_ADDRCONFIG is

specified, the function returns a NULL pointer; (b) if AI_ADDRCONFIG | AI_V4MAPPED is

specified, the A records are returned as IPv4-mapped IPv6 addresses;

The special flags value of AI_DEFAULT is defined as

#define AI_DEFAULT (AI_V4MAPPED_CFG | AI_ADDRCONFIG)

We noted that the getipnodebyname() function must allow the name argument to be either a node name

or a literal address string (i.e., a dotted-decimal IPv4 address or an IPv6 hex address). This saves

applications from having to call inet_pton(3) to handle literal address strings. When the name argument

is a literal address string, the flags argument is always ignored.

There are four scenarios based on the type of literal address string and the value of the af argument. The

two simple cases are when name is a dotted-decimal IPv4 address and af equals AF_INET, or when

name is an IPv6 hex address and af equals AF_INET6. The members of the returned hostent structure

are: h_name points to a copy of the name argument, h_aliases is a NULL pointer, h_addrtype is a copy

of the af argument, h_length is either 4 (for AF_INET) or 16 (for AF_INET6), h_addr_list[0] is a pointer

to the 4-byte or 16-byte binary address, and h_addr_list[1] is a NULL pointer.

When name is a dotted-decimal IPv4 address and af equals AF_INET6, and AI_V4MAPPED is

specified, an IPv4-mapped IPv6 address is returned: h_name points to an IPv6 hex address containing

the IPv4-mapped IPv6 address, h_aliases is a NULL pointer, h_addrtype is AF_INET6, h_length is 16,

h_addr_list[0] is a pointer to the 16-byte binary address, and h_addr_list[1] is a NULL pointer.

It is an error when name is an IPv6 hex address and af equals AF_INET. The function’s return value is

a NULL pointer and the value pointed to by error_num equals HOST_NOT_FOUND.

The getipnodebyaddr() function takes almost the same argument as gethostbyaddr(3), but adds a pointer

to return an error number. Additionally it takes care of IPv4-mapped IPv6 addresses, and

IPv4-compatible IPv6 addresses.

The getipnodebyname() and getipnodebyaddr() functions dynamically allocate the structure to be

returned to the caller. The freehostent() function reclaims memory region allocated and returned by

getipnodebyname() or getipnodebyaddr().

FILES
/etc/hosts

/etc/nsswitch.conf

/etc/resolv.conf

GETIPNODEBYNAME(3) FreeBSD Library Functions Manual GETIPNODEBYNAME(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11



DIAGNOSTICS
The getipnodebyname() and getipnodebyaddr() functions returns NULL on errors. The integer values

pointed to by error_num may then be checked to see whether this is a temporary failure or an invalid or

unknown host. The meanings of each error code are described in gethostbyname(3).

SEE ALSO
getaddrinfo(3), gethostbyaddr(3), gethostbyname(3), getnameinfo(3), hosts(5), nsswitch.conf(5),

services(5), hostname(7)

R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface Extensions for IPv6,

RFC2553, March 1999.

STANDARDS
The getipnodebyname() and getipnodebyaddr() functions are documented in "Basic Socket Interface

Extensions for IPv6" (RFC2553).

HISTORY
The implementation first appeared in KAME advanced networking kit.

BUGS
The getipnodebyname() and getipnodebyaddr() functions do not handle scoped IPv6 address properly.

If you use these functions, your program will not be able to handle scoped IPv6 addresses. For IPv6

address manipulation, getaddrinfo(3) and getnameinfo(3) are recommended.

The text was shamelessly copied from RFC2553.

GETIPNODEBYNAME(3) FreeBSD Library Functions Manual GETIPNODEBYNAME(3)

FreeBSD 14.0-RELEASE-p11 June 27, 2022 FreeBSD 14.0-RELEASE-p11


