
NAME
gio - GIO commandline tool

SYNOPSIS
gio help [COMMAND]

gio version

gio cat LOCATION...

gio copy [OPTION...] SOURCE... DESTINATION

gio info [OPTION...] LOCATION...

gio launch DESKTOP-FILE [FILE-ARG...]

gio list [OPTION...] [LOCATION...]

gio mime MIMETYPE [HANDLER]

gio mkdir [OPTION...] LOCATION...

gio monitor [OPTION...] [LOCATION...]

gio mount [OPTION...] [LOCATION...]

gio move [OPTION...] SOURCE... DESTINATION

gio open LOCATION...

gio rename LOCATION NAME

gio remove [OPTION...] LOCATION...

gio save [OPTION...] DESTINATION

gio set [OPTION...] LOCATION ATTRIBUTE VALUE...

gio trash [OPTION...] [LOCATION...]

GIO(1) User Commands GIO(1)

GIO GIO(1)

gio tree [OPTION...] [LOCATION...]

DESCRIPTION
gio is a utility that makes many of the GIO features available from the commandline. In doing so, it

provides commands that are similar to traditional utilities, but let you use GIO locations instead of local

files: for example you can use something like smb://server/resource/file.txt as a location.

Plain filenames which contain a colon will be interpreted as URIs with an unknown protocol. To avoid

this, prefix them with a path such as ./, or with the file: protocol.

COMMANDS
help [COMMAND]

Displays a short synopsis of the available commands or provides detailed help on a specific

command.

version
Prints the GLib version to which gio belongs.

cat LOCATION...

Concatenates the given files and prints them to the standard output.

The cat command works just like the traditional cat utility.

Note: just pipe through cat if you need its formatting options like -n, -T or other.

copy [OPTION...] SOURCE... DESTINATION

Copies one or more files from SOURCE to DESTINATION. If more than one source is specified,

the destination must be a directory.

The copy command is similar to the traditional cp utility.

Options

-T, --no-target-directory
Don’t copy into DESTINATION even if it is a directory.

-p, --progress
Show progress.

-i, --interactive

GIO(1) User Commands GIO(1)

GIO GIO(1)

Prompt for confirmation before overwriting files.

--preserve
Preserve all attributes of copied files.

-b, --backup
Create backups of existing destination files.

-P, --no-dereference
Never follow symbolic links.

--default-permissions
Use the default permissions of the current process for the destination file, rather than

copying the permissions of the source file.

info [OPTION...] LOCATION...

Shows information about the given locations.

The info command is similar to the traditional ls utility.

Options

-w, --query-writable
List writable attributes.

-f, --filesystem
Show information about the filesystem that the given locations reside on.

-a --attributes=ATTRIBUTES

The attributes to get.

Attributes can be specified with their GIO name, e.g. standard::icon, or just by

namespace, e.g. unix, or by *, which matches all attributes. Several attributes or groups

of attributes can be specified, separated by comma.

By default, all attributes are listed.

-n, --nofollow-symlinks
Don’t follow symbolic links.

GIO(1) User Commands GIO(1)

GIO GIO(1)

launch DESKTOP-FILE [FILE-ARG...]

Launch a desktop file from any location given.

The launch command extends the behavior of the open command by allowing any desktop file to

be launched, not only those registered as file handlers.

list [OPTION...] [LOCATION...]

Lists the contents of the given locations. If no location is given, the contents of the current

directory are shown.

The list command is similar to the traditional ls utility.

Options

-a --attributes=ATTRIBUTES

The attributes to get.

Attributes can be specified with their GIO name, e.g. standard::icon, or just by

namespace, e.g. unix, or by *, which matches all attributes. Several attributes or groups

of attributes can be specified, separated by comma.

By default, all attributes are listed.

-h, --hidden
Show hidden files.

-l, --long
Use a long listing format.

-n, --nofollow-symlinks
Don’t follow symbolic links.

-d, --print-display-names
Print display names.

-u, --print-uris
Print full URIs.

mime MIMETYPE [HANDLER]

If no handler is given, the mime command lists the registered and recommended applications for

GIO(1) User Commands GIO(1)

GIO GIO(1)

the mimetype. If a handler is given, it is set as the default handler for the mimetype.

Handlers must be specified by their desktop file name, including the extension. Example:

org.gnome.gedit.desktop.

mkdir [OPTION...] LOCATION...

Creates directories.

The mkdir command is similar to the traditional mkdir utility.

Options

-p, --parent
Create parent directories when necessary.

monitor [OPTION...] [LOCATION...]

Monitors files or directories for changes, such as creation deletion, content and attribute changes,

and mount and unmount operations affecting the monitored locations.

The monitor command uses the GIO file monitoring APIs to do its job. GIO has different

implementations for different platforms. The most common implementation on Linux uses inotify.

Options

-d, --dir=LOCATION

Monitor the given location as a directory. Normally, the file type is used to determine

whether to monitor a file or directory.

-f, --file=LOCATION

Monitor the given location as a file. Normally, the file type is used to determine whether

to monitor a file or directory.

-D, --direct=LOCATION

Monitor the file directly. This allows changes made via hardlinks to be captured.

-s, --silent=LOCATION

Monitor the file directly, but don’t report changes.

-n, --no-moves
Report moves and renames as simple deleted/created events.

GIO(1) User Commands GIO(1)

GIO GIO(1)

-m, --mounts
Watch for mount events.

mount [OPTION...] [LOCATION...]

Provides commandline access to various aspects of GIO’s mounting functionality.

Mounting refers to the traditional concept of arranging multiple file systems and devices in a

single tree, rooted at /. Classical mounting happens in the kernel and is controlled by the mount

utility. GIO expands this concept by introducing mount daemons that can make file systems

available to GIO applications without kernel involvement.

GIO mounts can require authentication, and the mount command may ask for user IDs, passwords,

and so on, when required.

Options

-m, --mountable
Mount as mountable.

-d, --device=ID

Mount volume with device file, or other identifier.

-u, --unmount
Unmount the location.

-e, --eject
Eject the location.

-t, --stop=DEVICE

Stop drive with device file.

-s, --unmount-scheme=SCHEME

Unmount all mounts with the given scheme.

-f, --force
Ignore outstanding file operations when unmounting or ejecting.

-a, --anonymous
Use an anonymous user when authenticating.

GIO(1) User Commands GIO(1)

GIO GIO(1)

-l, --list
List all GIO mounts.

-o, --monitor
Monitor mount-related events.

-i, --detail
Show extra information.

--tcrypt-pim
The numeric PIM when unlocking a VeraCrypt volume.

--tcrypt-hidden
Mount a TCRYPT hidden volume.

--tcrypt-system
Mount a TCRYPT system volume.

move [OPTION...] SOURCE... DESTINATION

Moves one or more files from SOURCE to DESTINATION. If more than one source is specified,

the destination must be a directory.

The move command is similar to the traditional mv utility.

Options

-T, --no-target-directory
Don’t copy into DESTINATION even if it is a directory.

-p, --progress
Show progress.

-i, --interactive
Prompt for confirmation before overwriting files.

-b, --backup
Create backups of existing destination files.

-C, --no-copy-fallback
Don’t use copy and delete fallback.

GIO(1) User Commands GIO(1)

GIO GIO(1)

open LOCATION...

Opens files with the default application that is registered to handle files of this type.

GIO obtains this information from the shared-mime-info database, with per-user overrides stored

in $XDG_DATA_HOME/applications/mimeapps.list.

The mime command can be used to change the default handler for a mimetype.

Environment variables will not be set on the application, as it may be an existing process which is

activated to handle the new file.

rename LOCATION NAME

Renames a file.

The rename command is similar to the traditional rename utility.

remove [OPTION...] LOCATION...

Deletes each given file.

This command removes files irreversibly. If you want a reversible way to remove files, see the

trash command.

Note that not all URI schemes that are supported by GIO may allow deletion of files.

The remove command is similar to the traditional rm utility.

Options

-f, --force
Ignore non-existent and non-deletable files.

save [OPTION...] DESTINATION

Reads from standard input and saves the data to the given location.

This is similar to just redirecting output to a file using traditional shell syntax, but the save
command allows saving to location that GIO can write to.

Options

-b, --backup

GIO(1) User Commands GIO(1)

GIO GIO(1)

Back up existing destination files.

-c, --create
Only create the destination if it doesn’t exist yet.

-a, --append
Append to the end of the file.

-p, --private
When creating, restrict access to the current user.

-u, --unlink
When replacing, replace as if the destination did not exist.

-v, --print-etag
Print the new ETag in the end.

-e, --etag=ETAG

The ETag of the file that is overwritten.

set LOCATION ATTRIBUTE VALUE...

Sets a file attribute on a file.

File attributes can be specified with their GIO name, e.g standard::icon. Note that not all GIO file

attributes are writable. Use the --query-writable option of the info command to list writable file

attributes.

If the TYPE is unset, VALUE does not have to be specified. If the TYPE is stringv, multiple

values can be given.

Options

-t, --type=TYPE

Specifies the type of the attribute. Supported types are string, stringv, bytestring,

boolean, uint32, int32, uint64, int64 and unset.

If the type is not specified, string is assumed.

-d, --delete
Unsets an attribute (same as setting it’s type to unset).

GIO(1) User Commands GIO(1)

GIO GIO(1)

-n, --nofollow-symlinks
Don’t follow symbolic links.

trash [OPTION...] [LOCATION...]

Sends files or directories to the ‘Trashcan’ or restore them from ‘Trashcan’. This can be a

different folder depending on where the file is located, and not all file systems support this

concept. In the common case that the file lives inside a user’s home directory, the trash folder is

$XDG_DATA_HOME/Trash.

Note that moving files to the trash does not free up space on the file system until the ‘Trashcan’ is

emptied. If you are interested in deleting a file irreversibly, see the remove command.

Inspecting and emptying the ‘Trashcan’ is normally supported by graphical file managers such as

Nautilus, but you can also see the trash with the command: gio trash --list or gio list trash://.

Options

-f, --force
Ignore non-existent and non-deletable files.

--empty
Empty the trash.

--list
List files in the trash with their original locations

--restore
Restore a file from trash to its original location. A URI beginning with trash:// is

expected here. If the original directory doesn’t exist, it will be recreated.

tree [OPTION...] [LOCATION...]

Lists the contents of the given locations recursively, in a tree-like format. If no location is given, it

defaults to the current directory.

The tree command is similar to the traditional tree utility.

Options

-h, --hidden
Show hidden files.

GIO(1) User Commands GIO(1)

GIO GIO(1)

-l, --follow-symlinks
Follow symbolic links.

EXIT STATUS
On success 0 is returned, a non-zero failure code otherwise.

SEE ALSO
cat(1), cp(1), ls(1), mkdir(1), mv(1), rm(1), tree(1).

GIO(1) User Commands GIO(1)

GIO GIO(1)

