
NAME
git-config - Get and set repository or global options

SYNOPSIS
git config [<file-option>] [--type=<type>] [--fixed-value] [--show-origin] [--show-scope] [-z|--null] <name> [<value> [<value-pattern>]]

git config [<file-option>] [--type=<type>] --add <name> <value>

git config [<file-option>] [--type=<type>] [--fixed-value] --replace-all <name> <value> [<value-pattern>]

git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] --get <name> [<value-pattern>]

git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] --get-all <name> [<value-pattern>]

git config [<file-option>] [--type=<type>] [--show-origin] [--show-scope] [-z|--null] [--fixed-value] [--name-only] --get-regexp

git config [<file-option>] [--type=<type>] [-z|--null] --get-urlmatch <name> <URL>

git config [<file-option>] [--fixed-value] --unset <name> [<value-pattern>]

git config [<file-option>] [--fixed-value] --unset-all <name> [<value-pattern>]

git config [<file-option>] --rename-section <old-name> <new-name>

git config [<file-option>] --remove-section <name>

git config [<file-option>] [--show-origin] [--show-scope] [-z|--null] [--name-only] -l | --list

git config [<file-option>] --get-color <name> [<default>]

git config [<file-option>] --get-colorbool <name> [<stdout-is-tty>]

git config [<file-option>] -e | --edit

DESCRIPTION
You can query/set/replace/unset options with this command. The name is actually the section and the

key separated by a dot, and the value will be escaped.

Multiple lines can be added to an option by using the --add option. If you want to update or unset an

option which can occur on multiple lines, a value-pattern (which is an extended regular expression,

unless the --fixed-value option is given) needs to be given. Only the existing values that match the

pattern are updated or unset. If you want to handle the lines that do not match the pattern, just prepend

a single exclamation mark in front (see also the section called "EXAMPLES"), but note that this only

works when the --fixed-value option is not in use.

The --type=<type> option instructs git config to ensure that incoming and outgoing values are

canonicalize-able under the given <type>. If no --type=<type> is given, no canonicalization will be

performed. Callers may unset an existing --type specifier with --no-type.

When reading, the values are read from the system, global and repository local configuration files by

default, and options --system, --global, --local, --worktree and --file <filename> can be used to tell the

command to read from only that location (see the section called "FILES").

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When writing, the new value is written to the repository local configuration file by default, and options

--system, --global, --worktree, --file <filename> can be used to tell the command to write to that

location (you can say --local but that is the default).

This command will fail with non-zero status upon error. Some exit codes are:

+o

section or key is invalid (ret=1),

+o

section or name was provided (ret=2),

+o

config file is invalid (ret=3),

+o

config file cannot be written (ret=4),

+o

try to unset an option which does not exist (ret=5),

+o

try to unset/set an option for which multiple lines match (ret=5), or

+o

try to use an invalid regexp (ret=6).

On success, the command returns the exit code 0.

A list of all available configuration variables can be obtained using the git help --config command.

OPTIONS
--replace-all

Default behavior is to replace at most one line. This replaces all lines matching the key (and

optionally the value-pattern).

--add

Adds a new line to the option without altering any existing values. This is the same as providing

^$ as the value-pattern in --replace-all.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

--get

Get the value for a given key (optionally filtered by a regex matching the value). Returns error

code 1 if the key was not found and the last value if multiple key values were found.

--get-all

Like get, but returns all values for a multi-valued key.

--get-regexp

Like --get-all, but interprets the name as a regular expression and writes out the key names.

Regular expression matching is currently case-sensitive and done against a canonicalized version

of the key in which section and variable names are lowercased, but subsection names are not.

--get-urlmatch <name> <URL>

When given a two-part name section.key, the value for section.<URL>.key whose <URL> part

matches the best to the given URL is returned (if no such key exists, the value for section.key is

used as a fallback). When given just the section as name, do so for all the keys in the section and

list them. Returns error code 1 if no value is found.

--global

For writing options: write to global ~/.gitconfig file rather than the repository .git/config, write to

$XDG_CONFIG_HOME/git/config file if this file exists and the ~/.gitconfig file doesn’t.

For reading options: read only from global ~/.gitconfig and from

$XDG_CONFIG_HOME/git/config rather than from all available files.

See also the section called "FILES".

--system

For writing options: write to system-wide $(prefix)/etc/gitconfig rather than the repository

.git/config.

For reading options: read only from system-wide $(prefix)/etc/gitconfig rather than from all

available files.

See also the section called "FILES".

--local

For writing options: write to the repository .git/config file. This is the default behavior.

For reading options: read only from the repository .git/config rather than from all available files.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

See also the section called "FILES".

--worktree

Similar to --local except that $GIT_DIR/config.worktree is read from or written to if

extensions.worktreeConfig is enabled. If not it’s the same as --local. Note that $GIT_DIR is equal

to $GIT_COMMON_DIR for the main working tree, but is of the form

$GIT_DIR/worktrees/<id>/ for other working trees. See git-worktree(1) to learn how to enable

extensions.worktreeConfig.

-f <config-file>, --file <config-file>

For writing options: write to the specified file rather than the repository .git/config.

For reading options: read only from the specified file rather than from all available files.

See also the section called "FILES".

--blob <blob>

Similar to --file but use the given blob instead of a file. E.g. you can use master:.gitmodules to

read values from the file .gitmodules in the master branch. See "SPECIFYING REVISIONS"

section in gitrevisions(7) for a more complete list of ways to spell blob names.

--remove-section

Remove the given section from the configuration file.

--rename-section

Rename the given section to a new name.

--unset

Remove the line matching the key from config file.

--unset-all

Remove all lines matching the key from config file.

-l, --list

List all variables set in config file, along with their values.

--fixed-value

When used with the value-pattern argument, treat value-pattern as an exact string instead of a

regular expression. This will restrict the name/value pairs that are matched to only those where the

value is exactly equal to the value-pattern.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

--type <type>

git config will ensure that any input or output is valid under the given type constraint(s), and will

canonicalize outgoing values in <type>’s canonical form.

Valid <type>’s include:

+o

canonicalize values as either "true" or "false".

+o

canonicalize values as simple decimal numbers. An optional suffix of k, m, or g will cause the value

to be multiplied by 1024, 1048576, or 1073741824 upon input.

+o

canonicalize according to either bool or int, as described above.

+o

canonicalize by adding a leading ~ to the value of $HOME and ~user to the home directory for the

specified user. This specifier has no effect when setting the value (but you can use git config
section.variable ~/ from the command line to let your shell do the expansion.)

+o

canonicalize by converting from a fixed or relative date-string to a timestamp. This specifier has no

effect when setting the value.

+o

When getting a value, canonicalize by converting to an ANSI color escape sequence. When setting a

value, a sanity-check is performed to ensure that the given value is canonicalize-able as an ANSI

color, but it is written as-is.

--bool, --int, --bool-or-int, --path, --expiry-date

Historical options for selecting a type specifier. Prefer instead --type (see above).

--no-type

Un-sets the previously set type specifier (if one was previously set). This option requests that git

config not canonicalize the retrieved variable. --no-type has no effect without --type=<type> or

--<type>.

-z, --null

For all options that output values and/or keys, always end values with the null character (instead

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

of a newline). Use newline instead as a delimiter

between key and value. This allows for secure

parsing of the output without getting confused e.g.

by values that contain line breaks.

--name-only

Output only the names of config variables for --list or --get-regexp.

--show-origin

Augment the output of all queried config options with the origin type (file, standard input, blob,

command line) and the actual origin (config file path, ref, or blob id if applicable).

--show-scope

Similar to --show-origin in that it augments the output of all queried config options with the scope

of that value (worktree, local, global, system, command).

--get-colorbool <name> [<stdout-is-tty>]

Find the color setting for <name> (e.g. color.diff) and output "true" or "false". <stdout-is-tty>
should be either "true" or "false", and is taken into account when configuration says "auto". If

<stdout-is-tty> is missing, then checks the standard output of the command itself, and exits with

status 0 if color is to be used, or exits with status 1 otherwise. When the color setting for name is

undefined, the command uses color.ui as fallback.

--get-color <name> [<default>]

Find the color configured for name (e.g. color.diff.new) and output it as the ANSI color escape

sequence to the standard output. The optional default parameter is used instead, if there is no color

configured for name.

--type=color [--default=<default>] is preferred over --get-color (but note that --get-color will omit

the trailing newline printed by --type=color).

-e, --edit

Opens an editor to modify the specified config file; either --system, --global, or repository

(default).

--[no-]includes

Respect include.* directives in config files when looking up values. Defaults to off when a

specific file is given (e.g., using --file, --global, etc) and on when searching all config files.

--default <value>

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When using --get, and the requested variable is not found, behave as if <value> were the value

assigned to the that variable.

CONFIGURATION
pager.config is only respected when listing configuration, i.e., when using --list or any of the --get-*
which may return multiple results. The default is to use a pager.

FILES
By default, git config will read configuration options from multiple files:

$(prefix)/etc/gitconfig

System-wide configuration file.

$XDG_CONFIG_HOME/git/config, ~/.gitconfig

User-specific configuration files. When the XDG_CONFIG_HOME environment variable is not

set or empty, $HOME/.config/ is used as $XDG_CONFIG_HOME.

These are also called "global" configuration files. If both files exist, both files are read in the order

given above.

$GIT_DIR/config

Repository specific configuration file.

$GIT_DIR/config.worktree

This is optional and is only searched when extensions.worktreeConfig is present in

$GIT_DIR/config.

You may also provide additional configuration parameters when running any git command by using the

-c option. See git(1) for details.

Options will be read from all of these files that are available. If the global or the system-wide

configuration files are missing or unreadable they will be ignored. If the repository configuration file is

missing or unreadable, git config will exit with a non-zero error code. An error message is produced if

the file is unreadable, but not if it is missing.

The files are read in the order given above, with last value found taking precedence over values read

earlier. When multiple values are taken then all values of a key from all files will be used.

By default, options are only written to the repository specific configuration file. Note that this also

affects options like --replace-all and --unset. git config will only ever change one file at a time.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

You can limit which configuration sources are read from or written to by specifying the path of a file

with the --file option, or by specifying a configuration scope with --system, --global, --local, or

--worktree. For more, see the section called "OPTIONS" above.

SCOPES
Each configuration source falls within a configuration scope. The scopes are:

system

$(prefix)/etc/gitconfig

global

$XDG_CONFIG_HOME/git/config

~/.gitconfig

local

$GIT_DIR/config

worktree

$GIT_DIR/config.worktree

command

GIT_CONFIG_{COUNT,KEY,VALUE} environment variables (see the section called

"ENVIRONMENT" below)

the -c option

With the exception of command, each scope corresponds to a command line option: --system, --global,
--local, --worktree.

When reading options, specifying a scope will only read options from the files within that scope. When

writing options, specifying a scope will write to the files within that scope (instead of the repository

specific configuration file). See the section called "OPTIONS" above for a complete description.

Most configuration options are respected regardless of the scope it is defined in, but some options are

only respected in certain scopes. See the respective option’s documentation for the full details.

Protected configuration
Protected configuration refers to the system, global, and command scopes. For security reasons, certain

options are only respected when they are specified in protected configuration, and ignored otherwise.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Git treats these scopes as if they are controlled by the user or a trusted administrator. This is because an

attacker who controls these scopes can do substantial harm without using Git, so it is assumed that the

user’s environment protects these scopes against attackers.

ENVIRONMENT
GIT_CONFIG_GLOBAL, GIT_CONFIG_SYSTEM

Take the configuration from the given files instead from global or system-level configuration. See

git(1) for details.

GIT_CONFIG_NOSYSTEM

Whether to skip reading settings from the system-wide $(prefix)/etc/gitconfig file. See git(1) for

details.

See also the section called "FILES".

GIT_CONFIG_COUNT, GIT_CONFIG_KEY_<n>, GIT_CONFIG_VALUE_<n>

If GIT_CONFIG_COUNT is set to a positive number, all environment pairs

GIT_CONFIG_KEY_<n> and GIT_CONFIG_VALUE_<n> up to that number will be added to

the process’s runtime configuration. The config pairs are zero-indexed. Any missing key or value

is treated as an error. An empty GIT_CONFIG_COUNT is treated the same as

GIT_CONFIG_COUNT=0, namely no pairs are processed. These environment variables will

override values in configuration files, but will be overridden by any explicit options passed via git
-c.

This is useful for cases where you want to spawn multiple git commands with a common

configuration but cannot depend on a configuration file, for example when writing scripts.

GIT_CONFIG

If no --file option is provided to git config, use the file given by GIT_CONFIG as if it were

provided via --file. This variable has no effect on other Git commands, and is mostly for historical

compatibility; there is generally no reason to use it instead of the --file option.

EXAMPLES
Given a .git/config like this:

#

This is the config file, and

a ’#’ or ’;’ character indicates

a comment

#

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

; core variables

[core]

; Don’t trust file modes

filemode = false

; Our diff algorithm

[diff]

external = /usr/local/bin/diff-wrapper

renames = true

; Proxy settings

[core]

gitproxy=proxy-command for kernel.org

gitproxy=default-proxy ; for all the rest

; HTTP

[http]

sslVerify

[http "https://weak.example.com"]

sslVerify = false

cookieFile = /tmp/cookie.txt

you can set the filemode to true with

% git config core.filemode true

The hypothetical proxy command entries actually have a postfix to discern what URL they apply to.

Here is how to change the entry for kernel.org to "ssh".

% git config core.gitproxy ’"ssh" for kernel.org’ ’for kernel.org$’

This makes sure that only the key/value pair for kernel.org is replaced.

To delete the entry for renames, do

% git config --unset diff.renames

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

If you want to delete an entry for a multivar (like core.gitproxy above), you have to provide a regex

matching the value of exactly one line.

To query the value for a given key, do

% git config --get core.filemode

or

% git config core.filemode

or, to query a multivar:

% git config --get core.gitproxy "for kernel.org$"

If you want to know all the values for a multivar, do:

% git config --get-all core.gitproxy

If you like to live dangerously, you can replace all core.gitproxy by a new one with

% git config --replace-all core.gitproxy ssh

However, if you really only want to replace the line for the default proxy, i.e. the one without a "for ..."

postfix, do something like this:

% git config core.gitproxy ssh ’! for ’

To actually match only values with an exclamation mark, you have to

% git config section.key value ’[!]’

To add a new proxy, without altering any of the existing ones, use

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

% git config --add core.gitproxy ’"proxy-command" for example.com’

An example to use customized color from the configuration in your script:

#!/bin/sh

WS=$(git config --get-color color.diff.whitespace "blue reverse")

RESET=$(git config --get-color "" "reset")

echo "${WS}your whitespace color or blue reverse${RESET}"

For URLs in https://weak.example.com, http.sslVerify is set to false, while it is set to true for all others:

% git config --type=bool --get-urlmatch http.sslverify https://good.example.com

true

% git config --type=bool --get-urlmatch http.sslverify https://weak.example.com

false

% git config --get-urlmatch http https://weak.example.com

http.cookieFile /tmp/cookie.txt

http.sslverify false

CONFIGURATION FILE
The Git configuration file contains a number of variables that affect the Git commands’ behavior. The

files .git/config and optionally config.worktree (see the "CONFIGURATION FILE" section of git-
worktree(1)) in each repository are used to store the configuration for that repository, and

$HOME/.gitconfig is used to store a per-user configuration as fallback values for the .git/config file.

The file /etc/gitconfig can be used to store a system-wide default configuration.

The configuration variables are used by both the Git plumbing and the porcelains. The variables are

divided into sections, wherein the fully qualified variable name of the variable itself is the last

dot-separated segment and the section name is everything before the last dot. The variable names are

case-insensitive, allow only alphanumeric characters and -, and must start with an alphabetic character.

Some variables may appear multiple times; we say then that the variable is multivalued.

Syntax
The syntax is fairly flexible and permissive; whitespaces are mostly ignored. The # and ; characters

begin comments to the end of line, blank lines are ignored.

The file consists of sections and variables. A section begins with the name of the section in square

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

brackets and continues until the next section begins. Section names are case-insensitive. Only

alphanumeric characters, - and . are allowed in section names. Each variable must belong to some

section, which means that there must be a section header before the first setting of a variable.

Sections can be further divided into subsections. To begin a subsection put its name in double quotes,

separated by space from the section name, in the section header, like in the example below:

[section "subsection"]

Subsection names are case sensitive and can contain any characters except newline and the null byte.

Doublequote " and backslash can be included by escaping them as \" and \\, respectively. Backslashes

preceding other characters are dropped when reading; for example, \t is read as t and \0 is read as 0.

Section headers cannot span multiple lines. Variables may belong directly to a section or to a given

subsection. You can have [section] if you have [section "subsection"], but you don’t need to.

There is also a deprecated [section.subsection] syntax. With this syntax, the subsection name is

converted to lower-case and is also compared case sensitively. These subsection names follow the same

restrictions as section names.

All the other lines (and the remainder of the line after the section header) are recognized as setting

variables, in the form name = value (or just name, which is a short-hand to say that the variable is the

boolean "true"). The variable names are case-insensitive, allow only alphanumeric characters and -, and

must start with an alphabetic character.

A line that defines a value can be continued to the next line by ending it with a \; the backslash and the

end-of-line are stripped. Leading whitespaces after name =, the remainder of the line after the first

comment character # or ;, and trailing whitespaces of the line are discarded unless they are enclosed in

double quotes. Internal whitespaces within the value are retained verbatim.

Inside double quotes, double quote " and backslash \ characters must be escaped: use \" for " and \\ for

\.

The following escape sequences (beside \" and \\) are recognized: \n for newline character (NL), \t for

horizontal tabulation (HT, TAB) and \b for backspace (BS). Other char escape sequences (including

octal escape sequences) are invalid.

Includes
The include and includeIf sections allow you to include config directives from another source. These

sections behave identically to each other with the exception that includeIf sections may be ignored if

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

their condition does not evaluate to true; see "Conditional includes" below.

You can include a config file from another by setting the special include.path (or includeIf.*.path)

variable to the name of the file to be included. The variable takes a pathname as its value, and is subject

to tilde expansion. These variables can be given multiple times.

The contents of the included file are inserted immediately, as if they had been found at the location of

the include directive. If the value of the variable is a relative path, the path is considered to be relative

to the configuration file in which the include directive was found. See below for examples.

Conditional includes
You can include a config file from another conditionally by setting a includeIf.<condition>.path
variable to the name of the file to be included.

The condition starts with a keyword followed by a colon and some data whose format and meaning

depends on the keyword. Supported keywords are:

gitdir
The data that follows the keyword gitdir: is used as a glob pattern. If the location of the .git

directory matches the pattern, the include condition is met.

The .git location may be auto-discovered, or come from $GIT_DIR environment variable. If the

repository is auto discovered via a .git file (e.g. from submodules, or a linked worktree), the .git

location would be the final location where the .git directory is, not where the .git file is.

The pattern can contain standard globbing wildcards and two additional ones, **/ and /**, that can

match multiple path components. Please refer to gitignore(5) for details. For convenience:

+o

the pattern starts with ~/, ~ will be substituted with the content of the environment variable HOME.

+o

the pattern starts with ./, it is replaced with the directory containing the current config file.

+o

the pattern does not start with either ~/, ./ or /, **/ will be automatically prepended. For example, the

pattern foo/bar becomes **/foo/bar and would match /any/path/to/foo/bar.

+o

the pattern ends with /, ** will be automatically added. For example, the pattern foo/ becomes

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

foo/**. In other words, it matches "foo" and everything inside,

recursively.

gitdir/i
This is the same as gitdir except that matching is done case-insensitively (e.g. on case-insensitive

file systems)

onbranch
The data that follows the keyword onbranch: is taken to be a pattern with standard globbing

wildcards and two additional ones, **/ and /**, that can match multiple path components. If we

are in a worktree where the name of the branch that is currently checked out matches the pattern,

the include condition is met.

If the pattern ends with /, ** will be automatically added. For example, the pattern foo/ becomes

foo/**. In other words, it matches all branches that begin with foo/. This is useful if your branches

are organized hierarchically and you would like to apply a configuration to all the branches in that

hierarchy.

hasconfig:remote.*.url:
The data that follows this keyword is taken to be a pattern with standard globbing wildcards and

two additional ones, **/ and /**, that can match multiple components. The first time this keyword

is seen, the rest of the config files will be scanned for remote URLs (without applying any values).

If there exists at least one remote URL that matches this pattern, the include condition is met.

Files included by this option (directly or indirectly) are not allowed to contain remote URLs.

Note that unlike other includeIf conditions, resolving this condition relies on information that is

not yet known at the point of reading the condition. A typical use case is this option being present

as a system-level or global-level config, and the remote URL being in a local-level config; hence

the need to scan ahead when resolving this condition. In order to avoid the chicken-and-egg

problem in which potentially-included files can affect whether such files are potentially included,

Git breaks the cycle by prohibiting these files from affecting the resolution of these conditions

(thus, prohibiting them from declaring remote URLs).

As for the naming of this keyword, it is for forwards compatibility with a naming scheme that

supports more variable-based include conditions, but currently Git only supports the exact

keyword described above.

A few more notes on matching via gitdir and gitdir/i:

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

in $GIT_DIR are not resolved before matching.

+o

the symlink & realpath versions of paths will be matched outside of $GIT_DIR. E.g. if ~/git is a symlink

to /mnt/storage/git, both gitdir:~/git and gitdir:/mnt/storage/git will match.

This was not the case in the initial release of this feature in v2.13.0, which only matched the realpath

version. Configuration that wants to be compatible with the initial release of this feature needs to either

specify only the realpath version, or both versions.

+o

that "../" is not special and will match literally, which is unlikely what you want.

Example
Core variables

[core]

; Don’t trust file modes

filemode = false

Our diff algorithm

[diff]

external = /usr/local/bin/diff-wrapper

renames = true

[branch "devel"]

remote = origin

merge = refs/heads/devel

Proxy settings

[core]

gitProxy="ssh" for "kernel.org"

gitProxy=default-proxy ; for the rest

[include]

path = /path/to/foo.inc ; include by absolute path

path = foo.inc ; find "foo.inc" relative to the current file

path = ~/foo.inc ; find "foo.inc" in your ‘$HOME‘ directory

; include if $GIT_DIR is /path/to/foo/.git

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

[includeIf "gitdir:/path/to/foo/.git"]

path = /path/to/foo.inc

; include for all repositories inside /path/to/group

[includeIf "gitdir:/path/to/group/"]

path = /path/to/foo.inc

; include for all repositories inside $HOME/to/group

[includeIf "gitdir:~/to/group/"]

path = /path/to/foo.inc

; relative paths are always relative to the including

; file (if the condition is true); their location is not

; affected by the condition

[includeIf "gitdir:/path/to/group/"]

path = foo.inc

; include only if we are in a worktree where foo-branch is

; currently checked out

[includeIf "onbranch:foo-branch"]

path = foo.inc

; include only if a remote with the given URL exists (note

; that such a URL may be provided later in a file or in a

; file read after this file is read, as seen in this example)

[includeIf "hasconfig:remote.*.url:https://example.com/**"]

path = foo.inc

[remote "origin"]

url = https://example.com/git

Values
Values of many variables are treated as a simple string, but there are variables that take values of

specific types and there are rules as to how to spell them.

boolean

When a variable is said to take a boolean value, many synonyms are accepted for true and false;

these are all case-insensitive.

true

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Boolean true literals are yes, on, true, and 1. Also, a variable defined without = <value> is

taken as true.

false

Boolean false literals are no, off, false, 0 and the empty string.

When converting a value to its canonical form using the --type=bool type specifier, git config

will ensure that the output is "true" or "false" (spelled in lowercase).

integer

The value for many variables that specify various sizes can be suffixed with k, M,... to mean

"scale the number by 1024", "by 1024x1024", etc.

color

The value for a variable that takes a color is a list of colors (at most two, one for foreground and

one for background) and attributes (as many as you want), separated by spaces.

The basic colors accepted are normal, black, red, green, yellow, blue, magenta, cyan, white and

default. The first color given is the foreground; the second is the background. All the basic colors

except normal and default have a bright variant that can be specified by prefixing the color with

bright, like brightred.

The color normal makes no change to the color. It is the same as an empty string, but can be used

as the foreground color when specifying a background color alone (for example, "normal red").

The color default explicitly resets the color to the terminal default, for example to specify a

cleared background. Although it varies between terminals, this is usually not the same as setting to

"white black".

Colors may also be given as numbers between 0 and 255; these use ANSI 256-color mode (but

note that not all terminals may support this). If your terminal supports it, you may also specify

24-bit RGB values as hex, like #ff0ab3.

The accepted attributes are bold, dim, ul, blink, reverse, italic, and strike (for crossed-out or

"strikethrough" letters). The position of any attributes with respect to the colors (before, after, or

in between), doesn’t matter. Specific attributes may be turned off by prefixing them with no or no-
(e.g., noreverse, no-ul, etc).

The pseudo-attribute reset resets all colors and attributes before applying the specified coloring.

For example, reset green will result in a green foreground and default background without any

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

active attributes.

An empty color string produces no color effect at all. This can be used to avoid coloring specific

elements without disabling color entirely.

For git’s pre-defined color slots, the attributes are meant to be reset at the beginning of each item

in the colored output. So setting color.decorate.branch to black will paint that branch name in a

plain black, even if the previous thing on the same output line (e.g. opening parenthesis before the

list of branch names in log --decorate output) is set to be painted with bold or some other attribute.

However, custom log formats may do more complicated and layered coloring, and the negated

forms may be useful there.

pathname

A variable that takes a pathname value can be given a string that begins with "~/" or "~user/", and

the usual tilde expansion happens to such a string: ~/ is expanded to the value of $HOME, and

~user/ to the specified user’s home directory.

If a path starts with %(prefix)/, the remainder is interpreted as a path relative to Git’s "runtime

prefix", i.e. relative to the location where Git itself was installed. For example, %(prefix)/bin/
refers to the directory in which the Git executable itself lives. If Git was compiled without runtime

prefix support, the compiled-in prefix will be substituted instead. In the unlikely event that a literal

path needs to be specified that should not be expanded, it needs to be prefixed by ./, like so:

./%(prefix)/bin.

Variables
Note that this list is non-comprehensive and not necessarily complete. For command-specific variables,

you will find a more detailed description in the appropriate manual page.

Other git-related tools may and do use their own variables. When inventing new variables for use in

your own tool, make sure their names do not conflict with those that are used by Git itself and other

popular tools, and describe them in your documentation.

advice.*

These variables control various optional help messages designed to aid new users. All advice.*

variables default to true, and you can tell Git that you do not need help by setting these to false:

ambiguousFetchRefspec

Advice shown when fetch refspec for multiple remotes map to the same remote-tracking

branch namespace and causes branch tracking set-up to fail.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

fetchShowForcedUpdates

Advice shown when git-fetch(1) takes a long time to calculate forced updates after ref

updates, or to warn that the check is disabled.

pushUpdateRejected

Set this variable to false if you want to disable pushNonFFCurrent, pushNonFFMatching,

pushAlreadyExists, pushFetchFirst, pushNeedsForce, and pushRefNeedsUpdate

simultaneously.

pushNonFFCurrent

Advice shown when git-push(1) fails due to a non-fast-forward update to the current branch.

pushNonFFMatching

Advice shown when you ran git-push(1) and pushed matching refs explicitly (i.e. you used :,

or specified a refspec that isn’t your current branch) and it resulted in a non-fast-forward

error.

pushAlreadyExists

Shown when git-push(1) rejects an update that does not qualify for fast-forwarding (e.g., a

tag.)

pushFetchFirst

Shown when git-push(1) rejects an update that tries to overwrite a remote ref that points at an

object we do not have.

pushNeedsForce

Shown when git-push(1) rejects an update that tries to overwrite a remote ref that points at an

object that is not a commit-ish, or make the remote ref point at an object that is not a

commit-ish.

pushUnqualifiedRefname

Shown when git-push(1) gives up trying to guess based on the source and destination refs

what remote ref namespace the source belongs in, but where we can still suggest that the user

push to either refs/heads/* or refs/tags/* based on the type of the source object.

pushRefNeedsUpdate

Shown when git-push(1) rejects a forced update of a branch when its remote-tracking ref has

updates that we do not have locally.

skippedCherryPicks

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Shown when git-rebase(1) skips a commit that has already been cherry-picked onto the

upstream branch.

statusAheadBehind

Shown when git-status(1) computes the ahead/behind counts for a local ref compared to its

remote tracking ref, and that calculation takes longer than expected. Will not appear if

status.aheadBehind is false or the option --no-ahead-behind is given.

statusHints

Show directions on how to proceed from the current state in the output of git-status(1), in the

template shown when writing commit messages in git-commit(1), and in the help message

shown by git-switch(1) or git-checkout(1) when switching branch.

statusUoption

Advise to consider using the -u option to git-status(1) when the command takes more than 2

seconds to enumerate untracked files.

commitBeforeMerge

Advice shown when git-merge(1) refuses to merge to avoid overwriting local changes.

resetNoRefresh

Advice to consider using the --no-refresh option to git-reset(1) when the command takes

more than 2 seconds to refresh the index after reset.

resolveConflict

Advice shown by various commands when conflicts prevent the operation from being

performed.

sequencerInUse

Advice shown when a sequencer command is already in progress.

implicitIdentity

Advice on how to set your identity configuration when your information is guessed from the

system username and domain name.

detachedHead

Advice shown when you used git-switch(1) or git-checkout(1) to move to the detach HEAD

state, to instruct how to create a local branch after the fact.

suggestDetachingHead

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Advice shown when git-switch(1) refuses to detach HEAD without the explicit --detach
option.

checkoutAmbiguousRemoteBranchName

Advice shown when the argument to git-checkout(1) and git-switch(1) ambiguously resolves

to a remote tracking branch on more than one remote in situations where an unambiguous

argument would have otherwise caused a remote-tracking branch to be checked out. See the

checkout.defaultRemote configuration variable for how to set a given remote to used by

default in some situations where this advice would be printed.

amWorkDir

Advice that shows the location of the patch file when git-am(1) fails to apply it.

rmHints

In case of failure in the output of git-rm(1), show directions on how to proceed from the

current state.

addEmbeddedRepo

Advice on what to do when you’ve accidentally added one git repo inside of another.

ignoredHook

Advice shown if a hook is ignored because the hook is not set as executable.

waitingForEditor

Print a message to the terminal whenever Git is waiting for editor input from the user.

nestedTag

Advice shown if a user attempts to recursively tag a tag object.

submoduleAlternateErrorStrategyDie

Advice shown when a submodule.alternateErrorStrategy option configured to "die" causes a

fatal error.

submodulesNotUpdated

Advice shown when a user runs a submodule command that fails because git submodule
update --init was not run.

addIgnoredFile

Advice shown if a user attempts to add an ignored file to the index.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

addEmptyPathspec

Advice shown if a user runs the add command without providing the pathspec parameter.

updateSparsePath

Advice shown when either git-add(1) or git-rm(1) is asked to update index entries outside the

current sparse checkout.

diverging

Advice shown when a fast-forward is not possible.

worktreeAddOrphan

Advice shown when a user tries to create a worktree from an invalid reference, to instruct

how to create a new orphan branch instead.

core.fileMode

Tells Git if the executable bit of files in the working tree is to be honored.

Some filesystems lose the executable bit when a file that is marked as executable is checked out,

or checks out a non-executable file with executable bit on. git-clone(1) or git-init(1) probe the

filesystem to see if it handles the executable bit correctly and this variable is automatically set as

necessary.

A repository, however, may be on a filesystem that handles the filemode correctly, and this

variable is set to true when created, but later may be made accessible from another environment

that loses the filemode (e.g. exporting ext4 via CIFS mount, visiting a Cygwin created repository

with Git for Windows or Eclipse). In such a case it may be necessary to set this variable to false.

See git-update-index(1).

The default is true (when core.filemode is not specified in the config file).

core.hideDotFiles

(Windows-only) If true, mark newly-created directories and files whose name starts with a dot as

hidden. If dotGitOnly, only the .git/ directory is hidden, but no other files starting with a dot. The

default mode is dotGitOnly.

core.ignoreCase

Internal variable which enables various workarounds to enable Git to work better on filesystems

that are not case sensitive, like APFS, HFS+, FAT, NTFS, etc. For example, if a directory listing

finds "makefile" when Git expects "Makefile", Git will assume it is really the same file, and

continue to remember it as "Makefile".

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

The default is false, except git-clone(1) or git-init(1) will probe and set core.ignoreCase true if

appropriate when the repository is created.

Git relies on the proper configuration of this variable for your operating and file system.

Modifying this value may result in unexpected behavior.

core.precomposeUnicode

This option is only used by Mac OS implementation of Git. When core.precomposeUnicode=true,

Git reverts the unicode decomposition of filenames done by Mac OS. This is useful when sharing

a repository between Mac OS and Linux or Windows. (Git for Windows 1.7.10 or higher is

needed, or Git under cygwin 1.7). When false, file names are handled fully transparent by Git,

which is backward compatible with older versions of Git.

core.protectHFS

If set to true, do not allow checkout of paths that would be considered equivalent to .git on an

HFS+ filesystem. Defaults to true on Mac OS, and false elsewhere.

core.protectNTFS

If set to true, do not allow checkout of paths that would cause problems with the NTFS filesystem,

e.g. conflict with 8.3 "short" names. Defaults to true on Windows, and false elsewhere.

core.fsmonitor

If set to true, enable the built-in file system monitor daemon for this working directory (git-
fsmonitor--daemon(1)).

Like hook-based file system monitors, the built-in file system monitor can speed up Git

commands that need to refresh the Git index (e.g. git status) in a working directory with many

files. The built-in monitor eliminates the need to install and maintain an external third-party tool.

The built-in file system monitor is currently available only on a limited set of supported platforms.

Currently, this includes Windows and MacOS.

Otherwise, this variable contains the pathname of the "fsmonitor"

hook command.

This hook command is used to identify all files that may have changed since the requested

date/time. This information is used to speed up git by avoiding unnecessary scanning of files that

have not changed.

See the "fsmonitor-watchman" section of githooks(5).

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Note that if you concurrently use multiple versions of Git, such as one version on the command

line and another version in an IDE tool, that the definition of core.fsmonitor was extended to

allow boolean values in addition to hook pathnames. Git versions 2.35.1 and prior will not

understand the boolean values and will consider the "true" or "false" values as hook pathnames to

be invoked. Git versions 2.26 thru 2.35.1 default to hook protocol V2 and will fall back to no

fsmonitor (full scan). Git versions prior to 2.26 default to hook protocol V1 and will silently

assume there were no changes to report (no scan), so status commands may report incomplete

results. For this reason, it is best to upgrade all of your Git versions before using the built-in file

system monitor.

core.fsmonitorHookVersion

Sets the protocol version to be used when invoking the "fsmonitor" hook.

There are currently versions 1 and 2. When this is not set, version 2 will be tried first and if it fails

then version 1 will be tried. Version 1 uses a timestamp as input to determine which files have

changes since that time but some monitors like Watchman have race conditions when used with a

timestamp. Version 2 uses an opaque string so that the monitor can return something that can be

used to determine what files have changed without race conditions.

core.trustctime

If false, the ctime differences between the index and the working tree are ignored; useful when the

inode change time is regularly modified by something outside Git (file system crawlers and some

backup systems). See git-update-index(1). True by default.

core.splitIndex

If true, the split-index feature of the index will be used. See git-update-index(1). False by default.

core.untrackedCache

Determines what to do about the untracked cache feature of the index. It will be kept, if this

variable is unset or set to keep. It will automatically be added if set to true. And it will

automatically be removed, if set to false. Before setting it to true, you should check that mtime is

working properly on your system. See git-update-index(1). keep by default, unless

feature.manyFiles is enabled which sets this setting to true by default.

core.checkStat

When missing or is set to default, many fields in the stat structure are checked to detect if a file

has been modified since Git looked at it. When this configuration variable is set to minimal,
sub-second part of mtime and ctime, the uid and gid of the owner of the file, the inode number

(and the device number, if Git was compiled to use it), are excluded from the check among these

fields, leaving only the whole-second part of mtime (and ctime, if core.trustCtime is set) and the

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

filesize to be checked.

There are implementations of Git that do not leave usable values in some fields (e.g. JGit); by

excluding these fields from the comparison, the minimal mode may help interoperability when the

same repository is used by these other systems at the same time.

core.quotePath

Commands that output paths (e.g. ls-files, diff), will quote "unusual" characters in the pathname

by enclosing the pathname in double-quotes and escaping those characters with backslashes in the

same way C escapes control characters (e.g. \t for TAB, \n for LF, \\ for backslash) or bytes with

values larger than 0x80 (e.g. octal \302\265 for "micro" in UTF-8). If this variable is set to false,

bytes higher than 0x80 are not considered "unusual" any more. Double-quotes, backslash and

control characters are always escaped regardless of the setting of this variable. A simple space

character is not considered "unusual". Many commands can output pathnames completely

verbatim using the -z option. The default value is true.

core.eol

Sets the line ending type to use in the working directory for files that are marked as text (either by

having the text attribute set, or by having text=auto and Git auto-detecting the contents as text).

Alternatives are lf, crlf and native, which uses the platform’s native line ending. The default value

is native. See gitattributes(5) for more information on end-of-line conversion. Note that this value

is ignored if core.autocrlf is set to true or input.

core.safecrlf

If true, makes Git check if converting CRLF is reversible when end-of-line conversion is active.

Git will verify if a command modifies a file in the work tree either directly or indirectly. For

example, committing a file followed by checking out the same file should yield the original file in

the work tree. If this is not the case for the current setting of core.autocrlf, Git will reject the file.

The variable can be set to "warn", in which case Git will only warn about an irreversible

conversion but continue the operation.

CRLF conversion bears a slight chance of corrupting data. When it is enabled, Git will convert

CRLF to LF during commit and LF to CRLF during checkout. A file that contains a mixture of LF

and CRLF before the commit cannot be recreated by Git. For text files this is the right thing to do:

it corrects line endings such that we have only LF line endings in the repository. But for binary

files that are accidentally classified as text the conversion can corrupt data.

If you recognize such corruption early you can easily fix it by setting the conversion type

explicitly in .gitattributes. Right after committing you still have the original file in your work tree

and this file is not yet corrupted. You can explicitly tell Git that this file is binary and Git will

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

handle the file appropriately.

Unfortunately, the desired effect of cleaning up text files with mixed line endings and the

undesired effect of corrupting binary files cannot be distinguished. In both cases CRLFs are

removed in an irreversible way. For text files this is the right thing to do because CRLFs are line

endings, while for binary files converting CRLFs corrupts data.

Note, this safety check does not mean that a checkout will generate a file identical to the original

file for a different setting of core.eol and core.autocrlf, but only for the current one. For example,

a text file with LF would be accepted with core.eol=lf and could later be checked out with

core.eol=crlf, in which case the resulting file would contain CRLF, although the original file

contained LF. However, in both work trees the line endings would be consistent, that is either all

LF or all CRLF, but never mixed. A file with mixed line endings would be reported by the

core.safecrlf mechanism.

core.autocrlf

Setting this variable to "true" is the same as setting the text attribute to "auto" on all files and

core.eol to "crlf". Set to true if you want to have CRLF line endings in your working directory and

the repository has LF line endings. This variable can be set to input, in which case no output

conversion is performed.

core.checkRoundtripEncoding

A comma and/or whitespace separated list of encodings that Git performs UTF-8 round trip

checks on if they are used in an working-tree-encoding attribute (see gitattributes(5)). The default

value is SHIFT-JIS.

core.symlinks

If false, symbolic links are checked out as small plain files that contain the link text. git-update-
index(1) and git-add(1) will not change the recorded type to regular file. Useful on filesystems

like FAT that do not support symbolic links.

The default is true, except git-clone(1) or git-init(1) will probe and set core.symlinks false if

appropriate when the repository is created.

core.gitProxy

A "proxy command" to execute (as command host port) instead of establishing direct connection

to the remote server when using the Git protocol for fetching. If the variable value is in the

"COMMAND for DOMAIN" format, the command is applied only on hostnames ending with the

specified domain string. This variable may be set multiple times and is matched in the given order;

the first match wins.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Can be overridden by the GIT_PROXY_COMMAND environment variable (which always

applies universally, without the special "for" handling).

The special string none can be used as the proxy command to specify that no proxy be used for a

given domain pattern. This is useful for excluding servers inside a firewall from proxy use, while

defaulting to a common proxy for external domains.

core.sshCommand

If this variable is set, git fetch and git push will use the specified command instead of ssh when

they need to connect to a remote system. The command is in the same form as the

GIT_SSH_COMMAND environment variable and is overridden when the environment variable is

set.

core.ignoreStat

If true, Git will avoid using lstat() calls to detect if files have changed by setting the

"assume-unchanged" bit for those tracked files which it has updated identically in both the index

and working tree.

When files are modified outside of Git, the user will need to stage the modified files explicitly

(e.g. see Examples section in git-update-index(1)). Git will not normally detect changes to those

files.

This is useful on systems where lstat() calls are very slow, such as CIFS/Microsoft Windows.

False by default.

core.preferSymlinkRefs

Instead of the default "symref" format for HEAD and other symbolic reference files, use symbolic

links. This is sometimes needed to work with old scripts that expect HEAD to be a symbolic link.

core.alternateRefsCommand

When advertising tips of available history from an alternate, use the shell to execute the specified

command instead of git-for-each-ref(1). The first argument is the absolute path of the alternate.

Output must contain one hex object id per line (i.e., the same as produced by git for-each-ref
--format=’%(objectname)’).

Note that you cannot generally put git for-each-ref directly into the config value, as it does not

take a repository path as an argument (but you can wrap the command above in a shell script).

core.alternateRefsPrefixes

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When listing references from an alternate, list only references that begin with the given prefix.

Prefixes match as if they were given as arguments to git-for-each-ref(1). To list multiple prefixes,

separate them with whitespace. If core.alternateRefsCommand is set, setting

core.alternateRefsPrefixes has no effect.

core.bare

If true this repository is assumed to be bare and has no working directory associated with it. If this

is the case a number of commands that require a working directory will be disabled, such as git-
add(1) or git-merge(1).

This setting is automatically guessed by git-clone(1) or git-init(1) when the repository was

created. By default a repository that ends in "/.git" is assumed to be not bare (bare = false), while

all other repositories are assumed to be bare (bare = true).

core.worktree

Set the path to the root of the working tree. If GIT_COMMON_DIR environment variable is set,

core.worktree is ignored and not used for determining the root of working tree. This can be

overridden by the GIT_WORK_TREE environment variable and the --work-tree command-line

option. The value can be an absolute path or relative to the path to the .git directory, which is

either specified by --git-dir or GIT_DIR, or automatically discovered. If --git-dir or GIT_DIR is

specified but none of --work-tree, GIT_WORK_TREE and core.worktree is specified, the current

working directory is regarded as the top level of your working tree.

Note that this variable is honored even when set in a configuration file in a ".git" subdirectory of a

directory and its value differs from the latter directory (e.g. "/path/to/.git/config" has core.worktree

set to "/different/path"), which is most likely a misconfiguration. Running Git commands in the

"/path/to" directory will still use "/different/path" as the root of the work tree and can cause

confusion unless you know what you are doing (e.g. you are creating a read-only snapshot of the

same index to a location different from the repository’s usual working tree).

core.logAllRefUpdates

Enable the reflog. Updates to a ref <ref> is logged to the file "$GIT_DIR/logs/<ref>", by

appending the new and old SHA-1, the date/time and the reason of the update, but only when the

file exists. If this configuration variable is set to true, missing "$GIT_DIR/logs/<ref>" file is

automatically created for branch heads (i.e. under refs/heads/), remote refs (i.e. under

refs/remotes/), note refs (i.e. under refs/notes/), and the symbolic ref HEAD. If it is set to always,

then a missing reflog is automatically created for any ref under refs/.

This information can be used to determine what commit was the tip of a branch "2 days ago".

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

This value is true by default in a repository that has a working directory associated with it, and

false by default in a bare repository.

core.repositoryFormatVersion

Internal variable identifying the repository format and layout version.

core.sharedRepository

When group (or true), the repository is made shareable between several users in a group (making

sure all the files and objects are group-writable). When all (or world or everybody), the repository

will be readable by all users, additionally to being group-shareable. When umask (or false), Git

will use permissions reported by umask(2). When 0xxx, where 0xxx is an octal number, files in

the repository will have this mode value. 0xxx will override user’s umask value (whereas the

other options will only override requested parts of the user’s umask value). Examples: 0660 will

make the repo read/write-able for the owner and group, but inaccessible to others (equivalent to

group unless umask is e.g. 0022). 0640 is a repository that is group-readable but not

group-writable. See git-init(1). False by default.

core.warnAmbiguousRefs

If true, Git will warn you if the ref name you passed it is ambiguous and might match multiple refs

in the repository. True by default.

core.compression

An integer -1..9, indicating a default compression level. -1 is the zlib default. 0 means no

compression, and 1..9 are various speed/size tradeoffs, 9 being slowest. If set, this provides a

default to other compression variables, such as core.looseCompression and pack.compression.

core.looseCompression

An integer -1..9, indicating the compression level for objects that are not in a pack file. -1 is the

zlib default. 0 means no compression, and 1..9 are various speed/size tradeoffs, 9 being slowest. If

not set, defaults to core.compression. If that is not set, defaults to 1 (best speed).

core.packedGitWindowSize

Number of bytes of a pack file to map into memory in a single mapping operation. Larger window

sizes may allow your system to process a smaller number of large pack files more quickly.

Smaller window sizes will negatively affect performance due to increased calls to the operating

system’s memory manager, but may improve performance when accessing a large number of large

pack files.

Default is 1 MiB if NO_MMAP was set at compile time, otherwise 32 MiB on 32 bit platforms

and 1 GiB on 64 bit platforms. This should be reasonable for all users/operating systems. You

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

probably do not need to adjust this value.

Common unit suffixes of k, m, or g are supported.

core.packedGitLimit

Maximum number of bytes to map simultaneously into memory from pack files. If Git needs to

access more than this many bytes at once to complete an operation it will unmap existing regions

to reclaim virtual address space within the process.

Default is 256 MiB on 32 bit platforms and 32 TiB (effectively unlimited) on 64 bit platforms.

This should be reasonable for all users/operating systems, except on the largest projects. You

probably do not need to adjust this value.

Common unit suffixes of k, m, or g are supported.

core.deltaBaseCacheLimit

Maximum number of bytes per thread to reserve for caching base objects that may be referenced

by multiple deltified objects. By storing the entire decompressed base objects in a cache Git is

able to avoid unpacking and decompressing frequently used base objects multiple times.

Default is 96 MiB on all platforms. This should be reasonable for all users/operating systems,

except on the largest projects. You probably do not need to adjust this value.

Common unit suffixes of k, m, or g are supported.

core.bigFileThreshold

The size of files considered "big", which as discussed below changes the behavior of numerous git

commands, as well as how such files are stored within the repository. The default is 512 MiB.

Common unit suffixes of k, m, or g are supported.

Files above the configured limit will be:

+o

deflated in packfiles, without attempting delta compression.

The default limit is primarily set with this use-case in mind. With it, most projects will have their

source code and other text files delta compressed, but not larger binary media files.

Storing large files without delta compression avoids excessive memory usage, at the slight expense

of increased disk usage.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

be treated as if they were labeled "binary" (see gitattributes(5)). e.g. git-log(1) and git-diff(1) will

not compute diffs for files above this limit.

+o

generally be streamed when written, which avoids excessive memory usage, at the cost of some fixed

overhead. Commands that make use of this include git-archive(1), git-fast-import(1), git-index-
pack(1), git-unpack-objects(1) and git-fsck(1).

core.excludesFile

Specifies the pathname to the file that contains patterns to describe paths that are not meant to be

tracked, in addition to .gitignore (per-directory) and .git/info/exclude. Defaults to

$XDG_CONFIG_HOME/git/ignore. If $XDG_CONFIG_HOME is either not set or empty,

$HOME/.config/git/ignore is used instead. See gitignore(5).

core.askPass

Some commands (e.g. svn and http interfaces) that interactively ask for a password can be told to

use an external program given via the value of this variable. Can be overridden by the

GIT_ASKPASS environment variable. If not set, fall back to the value of the SSH_ASKPASS
environment variable or, failing that, a simple password prompt. The external program shall be

given a suitable prompt as command-line argument and write the password on its STDOUT.

core.attributesFile

In addition to .gitattributes (per-directory) and .git/info/attributes, Git looks into this file for

attributes (see gitattributes(5)). Path expansions are made the same way as for core.excludesFile.

Its default value is $XDG_CONFIG_HOME/git/attributes. If $XDG_CONFIG_HOME is either

not set or empty, $HOME/.config/git/attributes is used instead.

core.hooksPath

By default Git will look for your hooks in the $GIT_DIR/hooks directory. Set this to different

path, e.g. /etc/git/hooks, and Git will try to find your hooks in that directory, e.g.

/etc/git/hooks/pre-receive instead of in $GIT_DIR/hooks/pre-receive.

The path can be either absolute or relative. A relative path is taken as relative to the directory

where the hooks are run (see the "DESCRIPTION" section of githooks(5)).

This configuration variable is useful in cases where you’d like to centrally configure your Git

hooks instead of configuring them on a per-repository basis, or as a more flexible and centralized

alternative to having an init.templateDir where you’ve changed default hooks.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

core.editor

Commands such as commit and tag that let you edit messages by launching an editor use the value

of this variable when it is set, and the environment variable GIT_EDITOR is not set. See git-
var(1).

core.commentChar

Commands such as commit and tag that let you edit messages consider a line that begins with this

character commented, and removes them after the editor returns (default #).

If set to "auto", git-commit would select a character that is not the beginning character of any line

in existing commit messages.

core.filesRefLockTimeout

The length of time, in milliseconds, to retry when trying to lock an individual reference. Value 0

means not to retry at all; -1 means to try indefinitely. Default is 100 (i.e., retry for 100ms).

core.packedRefsTimeout

The length of time, in milliseconds, to retry when trying to lock the packed-refs file. Value 0

means not to retry at all; -1 means to try indefinitely. Default is 1000 (i.e., retry for 1 second).

core.pager

Text viewer for use by Git commands (e.g., less). The value is meant to be interpreted by the shell.

The order of preference is the $GIT_PAGER environment variable, then core.pager configuration,

then $PAGER, and then the default chosen at compile time (usually less).

When the LESS environment variable is unset, Git sets it to FRX (if LESS environment variable is

set, Git does not change it at all). If you want to selectively override Git’s default setting for

LESS, you can set core.pager to e.g. less -S. This will be passed to the shell by Git, which will

translate the final command to LESS=FRX less -S. The environment does not set the S option but

the command line does, instructing less to truncate long lines. Similarly, setting core.pager to less
-+F will deactivate the F option specified by the environment from the command-line,

deactivating the "quit if one screen" behavior of less. One can specifically activate some flags for

particular commands: for example, setting pager.blame to less -S enables line truncation only for

git blame.

Likewise, when the LV environment variable is unset, Git sets it to -c. You can override this

setting by exporting LV with another value or setting core.pager to lv +c.

core.whitespace

A comma separated list of common whitespace problems to notice. git diff will use

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

color.diff.whitespace to highlight them, and git apply --whitespace=error will consider them as

errors. You can prefix - to disable any of them (e.g. -trailing-space):

+o

treats trailing whitespaces at the end of the line as an error (enabled by default).

+o

treats a space character that appears immediately before a tab character in the initial indent part of the

line as an error (enabled by default).

+o

treats a line that is indented with space characters instead of the equivalent tabs as an error (not

enabled by default).

+o

treats a tab character in the initial indent part of the line as an error (not enabled by default).

+o

treats blank lines added at the end of file as an error (enabled by default).

+o

is a short-hand to cover both blank-at-eol and blank-at-eof.

+o

treats a carriage-return at the end of line as part of the line terminator, i.e. with it, trailing-space does

not trigger if the character before such a carriage-return is not a whitespace (not enabled by default).

+o

tells how many character positions a tab occupies; this is relevant for indent-with-non-tab and when

Git fixes tab-in-indent errors. The default tab width is 8. Allowed values are 1 to 63.

core.fsync

A comma-separated list of components of the repository that should be hardened via the

core.fsyncMethod when created or modified. You can disable hardening of any component by

prefixing it with a -. Items that are not hardened may be lost in the event of an unclean system

shutdown. Unless you have special requirements, it is recommended that you leave this option

empty or pick one of committed, added, or all.

When this configuration is encountered, the set of components starts with the platform default

value, disabled components are removed, and additional components are added. none resets the

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

state so that the platform default is

ignored.

The empty string resets the fsync

configuration to the platform

default. The default on most

platforms is equivalent to

core.fsync=committed,-loose-object,
which has good performance, but

risks losing recent work in the event

of an unclean system shutdown.

+o

clears the set of fsynced components.

+o

hardens objects added to the repo in loose-object form.

+o

hardens objects added to the repo in packfile form.

+o

hardens packfile bitmaps and indexes.

+o

hardens the commit-graph file.

+o

hardens the index when it is modified.

+o

is an aggregate option that is equivalent to loose-object,pack.

+o

hardens references modified in the repo.

+o

is an aggregate option that is equivalent to pack-metadata,commit-graph.

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

is an aggregate option

that is currently

equivalent to objects.

This mode sacrifices

some performance to

ensure that work that is

committed to the

repository with git
commit or similar

commands is hardened.

+o

is an aggregate option that is currently equivalent to committed,index. This mode sacrifices

additional performance to ensure that the results of commands like git add and similar operations are

hardened.

+o

is an aggregate option that syncs all individual components above.

core.fsyncMethod

A value indicating the strategy Git will use to harden repository data using fsync and related

primitives.

+o

uses the fsync() system call or platform equivalents.

+o

issues pagecache writeback requests, but depending on the filesystem and storage hardware, data

added to the repository may not be durable in the event of a system crash. This is the default mode on

macOS.

+o

enables a mode that uses writeout-only flushes to stage multiple updates in the disk writeback cache

and then does a single full fsync of a dummy file to trigger the disk cache flush at the end of the

operation.

Currently batch mode only applies to loose-object files. Other repository data is made durable as if

fsync was specified. This mode is expected to be as safe as fsync on macOS for repos stored on

HFS+ or APFS filesystems and on Windows for repos stored on NTFS or ReFS filesystems.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

core.fsyncObjectFiles

This boolean will enable fsync() when writing object files. This setting is deprecated. Use

core.fsync instead.

This setting affects data added to the Git repository in loose-object form. When set to true, Git will

issue an fsync or similar system call to flush caches so that loose-objects remain consistent in the

face of a unclean system shutdown.

core.preloadIndex

Enable parallel index preload for operations like git diff

This can speed up operations like git diff and git status especially on filesystems like NFS that

have weak caching semantics and thus relatively high IO latencies. When enabled, Git will do the

index comparison to the filesystem data in parallel, allowing overlapping IO’s. Defaults to true.

core.unsetenvvars

Windows-only: comma-separated list of environment variables’ names that need to be unset

before spawning any other process. Defaults to PERL5LIB to account for the fact that Git for

Windows insists on using its own Perl interpreter.

core.restrictinheritedhandles

Windows-only: override whether spawned processes inherit only standard file handles (stdin,

stdout and stderr) or all handles. Can be auto, true or false. Defaults to auto, which means true on

Windows 7 and later, and false on older Windows versions.

core.createObject

You can set this to link, in which case a hardlink followed by a delete of the source are used to

make sure that object creation will not overwrite existing objects.

On some file system/operating system combinations, this is unreliable. Set this config setting to

rename there; However, This will remove the check that makes sure that existing object files will

not get overwritten.

core.notesRef

When showing commit messages, also show notes which are stored in the given ref. The ref must

be fully qualified. If the given ref does not exist, it is not an error but means that no notes should

be printed.

This setting defaults to "refs/notes/commits", and it can be overridden by the GIT_NOTES_REF
environment variable. See git-notes(1).

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

core.commitGraph

If true, then git will read the commit-graph file (if it exists) to parse the graph structure of

commits. Defaults to true. See git-commit-graph(1) for more information.

core.useReplaceRefs

If set to false, behave as if the --no-replace-objects option was given on the command line. See

git(1) and git-replace(1) for more information.

core.multiPackIndex

Use the multi-pack-index file to track multiple packfiles using a single index. See git-multi-pack-
index(1) for more information. Defaults to true.

core.sparseCheckout

Enable "sparse checkout" feature. See git-sparse-checkout(1) for more information.

core.sparseCheckoutCone

Enables the "cone mode" of the sparse checkout feature. When the sparse-checkout file contains a

limited set of patterns, this mode provides significant performance advantages. The "non-cone

mode" can be requested to allow specifying more flexible patterns by setting this variable to false.

See git-sparse-checkout(1) for more information.

core.abbrev

Set the length object names are abbreviated to. If unspecified or set to "auto", an appropriate value

is computed based on the approximate number of packed objects in your repository, which

hopefully is enough for abbreviated object names to stay unique for some time. If set to "no", no

abbreviation is made and the object names are shown in their full length. The minimum length is

4.

add.ignoreErrors, add.ignore-errors (deprecated)

Tells git add to continue adding files when some files cannot be added due to indexing errors.

Equivalent to the --ignore-errors option of git-add(1). add.ignore-errors is deprecated, as it does

not follow the usual naming convention for configuration variables.

add.interactive.useBuiltin

Unused configuration variable. Used in Git versions v2.25.0 to v2.36.0 to enable the built-in

version of git-add(1)’s interactive mode, which then became the default in Git versions v2.37.0 to

v2.39.0.

alias.*

Command aliases for the git(1) command wrapper - e.g. after defining alias.last = cat-file commit

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

HEAD, the invocation git last is equivalent to git cat-file commit HEAD. To avoid confusion and

troubles with script usage, aliases that hide existing Git commands are ignored. Arguments are

split by spaces, the usual shell quoting and escaping is supported. A quote pair or a backslash can

be used to quote them.

Note that the first word of an alias does not necessarily have to be a command. It can be a

command-line option that will be passed into the invocation of git. In particular, this is useful

when used with -c to pass in one-time configurations or -p to force pagination. For example,

loud-rebase = -c commit.verbose=true rebase can be defined such that running git loud-rebase
would be equivalent to git -c commit.verbose=true rebase. Also, ps = -p status would be a helpful

alias since git ps would paginate the output of git status where the original command does not.

If the alias expansion is prefixed with an exclamation point, it will be treated as a shell command.

For example, defining alias.new = !gitk --all --not ORIG_HEAD, the invocation git new is

equivalent to running the shell command gitk --all --not ORIG_HEAD. Note that shell commands

will be executed from the top-level directory of a repository, which may not necessarily be the

current directory. GIT_PREFIX is set as returned by running git rev-parse --show-prefix from the

original current directory. See git-rev-parse(1).

am.keepcr

If true, git-am will call git-mailsplit for patches in mbox format with parameter --keep-cr. In this

case git-mailsplit will not remove \r from lines ending with \r\n. Can be overridden by giving

--no-keep-cr from the command line. See git-am(1), git-mailsplit(1).

am.threeWay

By default, git am will fail if the patch does not apply cleanly. When set to true, this setting tells

git am to fall back on 3-way merge if the patch records the identity of blobs it is supposed to apply

to and we have those blobs available locally (equivalent to giving the --3way option from the

command line). Defaults to false. See git-am(1).

apply.ignoreWhitespace

When set to change, tells git apply to ignore changes in whitespace, in the same way as the

--ignore-space-change option. When set to one of: no, none, never, false tells git apply to respect

all whitespace differences. See git-apply(1).

apply.whitespace

Tells git apply how to handle whitespaces, in the same way as the --whitespace option. See git-
apply(1).

blame.blankBoundary

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Show blank commit object name for boundary commits in git-blame(1). This option defaults to

false.

blame.coloring

This determines the coloring scheme to be applied to blame output. It can be repeatedLines,

highlightRecent, or none which is the default.

blame.date

Specifies the format used to output dates in git-blame(1). If unset the iso format is used. For

supported values, see the discussion of the --date option at git-log(1).

blame.showEmail

Show the author email instead of author name in git-blame(1). This option defaults to false.

blame.showRoot

Do not treat root commits as boundaries in git-blame(1). This option defaults to false.

blame.ignoreRevsFile

Ignore revisions listed in the file, one unabbreviated object name per line, in git-blame(1).

Whitespace and comments beginning with # are ignored. This option may be repeated multiple

times. Empty file names will reset the list of ignored revisions. This option will be handled before

the command line option --ignore-revs-file.

blame.markUnblamableLines

Mark lines that were changed by an ignored revision that we could not attribute to another commit

with a * in the output of git-blame(1).

blame.markIgnoredLines

Mark lines that were changed by an ignored revision that we attributed to another commit with a ?

in the output of git-blame(1).

branch.autoSetupMerge

Tells git branch, git switch and git checkout to set up new branches so that git-pull(1) will

appropriately merge from the starting point branch. Note that even if this option is not set, this

behavior can be chosen per-branch using the --track and --no-track options. The valid settings are:

false -- no automatic setup is done; true -- automatic setup is done when the starting point is a

remote-tracking branch; always -- automatic setup is done when the starting point is either a local

branch or remote-tracking branch; inherit -- if the starting point has a tracking configuration, it is

copied to the new branch; simple -- automatic setup is done only when the starting point is a

remote-tracking branch and the new branch has the same name as the remote branch. This option

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

defaults to true.

branch.autoSetupRebase

When a new branch is created with git branch, git switch or git checkout that tracks another

branch, this variable tells Git to set up pull to rebase instead of merge (see

"branch.<name>.rebase"). When never, rebase is never automatically set to true. When local,
rebase is set to true for tracked branches of other local branches. When remote, rebase is set to true

for tracked branches of remote-tracking branches. When always, rebase will be set to true for all

tracking branches. See "branch.autoSetupMerge" for details on how to set up a branch to track

another branch. This option defaults to never.

branch.sort

This variable controls the sort ordering of branches when displayed by git-branch(1). Without the

"--sort=<value>" option provided, the value of this variable will be used as the default. See git-
for-each-ref(1) field names for valid values.

branch.<name>.remote

When on branch <name>, it tells git fetch and git push which remote to fetch from/push to. The

remote to push to may be overridden with remote.pushDefault (for all branches). The remote to

push to, for the current branch, may be further overridden by branch.<name>.pushRemote. If no

remote is configured, or if you are not on any branch and there is more than one remote defined in

the repository, it defaults to origin for fetching and remote.pushDefault for pushing. Additionally,

. (a period) is the current local repository (a dot-repository), see branch.<name>.merge’s final note

below.

branch.<name>.pushRemote

When on branch <name>, it overrides branch.<name>.remote for pushing. It also overrides

remote.pushDefault for pushing from branch <name>. When you pull from one place (e.g. your

upstream) and push to another place (e.g. your own publishing repository), you would want to set

remote.pushDefault to specify the remote to push to for all branches, and use this option to

override it for a specific branch.

branch.<name>.merge

Defines, together with branch.<name>.remote, the upstream branch for the given branch. It tells

git fetch/git pull/git rebase which branch to merge and can also affect git push (see push.default).

When in branch <name>, it tells git fetch the default refspec to be marked for merging in

FETCH_HEAD. The value is handled like the remote part of a refspec, and must match a ref

which is fetched from the remote given by "branch.<name>.remote". The merge information is

used by git pull (which at first calls git fetch) to lookup the default branch for merging. Without

this option, git pull defaults to merge the first refspec fetched. Specify multiple values to get an

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

octopus merge. If you wish to setup git pull so that it merges into <name> from another branch in

the local repository, you can point branch.<name>.merge to the desired branch, and use the

relative path setting . (a period) for branch.<name>.remote.

branch.<name>.mergeOptions

Sets default options for merging into branch <name>. The syntax and supported options are the

same as those of git-merge(1), but option values containing whitespace characters are currently

not supported.

branch.<name>.rebase

When true, rebase the branch <name> on top of the fetched branch, instead of merging the default

branch from the default remote when "git pull" is run. See "pull.rebase" for doing this in a non

branch-specific manner.

When merges (or just m), pass the --rebase-merges option to git rebase so that the local merge

commits are included in the rebase (see git-rebase(1) for details).

When the value is interactive (or just i), the rebase is run in interactive mode.

NOTE: this is a possibly dangerous operation; do not use it unless you understand the implications

(see git-rebase(1) for details).

branch.<name>.description

Branch description, can be edited with git branch --edit-description. Branch description is

automatically added in the format-patch cover letter or request-pull summary.

browser.<tool>.cmd

Specify the command to invoke the specified browser. The specified command is evaluated in

shell with the URLs passed as arguments. (See git-web--browse(1).)

browser.<tool>.path

Override the path for the given tool that may be used to browse HTML help (see -w option in git-
help(1)) or a working repository in gitweb (see git-instaweb(1)).

bundle.*

The bundle.* keys may appear in a bundle list file found via the git clone --bundle-uri option.

These keys currently have no effect if placed in a repository config file, though this will change in

the future. See the bundle URI design document[1] for more details.

bundle.version

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

This integer value advertises the version of the bundle list format used by the bundle list.

Currently, the only accepted value is 1.

bundle.mode

This string value should be either all or any. This value describes whether all of the advertised

bundles are required to unbundle a complete understanding of the bundled information (all) or if

any one of the listed bundle URIs is sufficient (any).

bundle.heuristic

If this string-valued key exists, then the bundle list is designed to work well with incremental git
fetch commands. The heuristic signals that there are additional keys available for each bundle that

help determine which subset of bundles the client should download. The only value currently

understood is creationToken.

bundle.<id>.*

The bundle.<id>.* keys are used to describe a single item in the bundle list, grouped under <id>
for identification purposes.

bundle.<id>.uri

This string value defines the URI by which Git can reach the contents of this <id>. This URI may

be a bundle file or another bundle list.

checkout.defaultRemote

When you run git checkout <something> or git switch <something> and only have one remote, it

may implicitly fall back on checking out and tracking e.g. origin/<something>. This stops

working as soon as you have more than one remote with a <something> reference. This setting

allows for setting the name of a preferred remote that should always win when it comes to

disambiguation. The typical use-case is to set this to origin.

Currently this is used by git-switch(1) and git-checkout(1) when git checkout <something> or git
switch <something> will checkout the <something> branch on another remote, and by git-
worktree(1) when git worktree add refers to a remote branch. This setting might be used for other

checkout-like commands or functionality in the future.

checkout.guess

Provides the default value for the --guess or --no-guess option in git checkout and git switch. See

git-switch(1) and git-checkout(1).

checkout.workers

The number of parallel workers to use when updating the working tree. The default is one, i.e.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

sequential execution. If set to a value less than one, Git will use as many workers as the number of

logical cores available. This setting and checkout.thresholdForParallelism affect all commands

that perform checkout. E.g. checkout, clone, reset, sparse-checkout, etc.

Note: parallel checkout usually delivers better performance for repositories located on SSDs or

over NFS. For repositories on spinning disks and/or machines with a small number of cores, the

default sequential checkout often performs better. The size and compression level of a repository

might also influence how well the parallel version performs.

checkout.thresholdForParallelism

When running parallel checkout with a small number of files, the cost of subprocess spawning and

inter-process communication might outweigh the parallelization gains. This setting allows to

define the minimum number of files for which parallel checkout should be attempted. The default

is 100.

clean.requireForce

A boolean to make git-clean do nothing unless given -f, -i or -n. Defaults to true.

clone.defaultRemoteName

The name of the remote to create when cloning a repository. Defaults to origin, and can be

overridden by passing the --origin command-line option to git-clone(1).

clone.rejectShallow

Reject to clone a repository if it is a shallow one, can be overridden by passing option

--reject-shallow in command line. See git-clone(1)

clone.filterSubmodules

If a partial clone filter is provided (see --filter in git-rev-list(1)) and --recurse-submodules is used,

also apply the filter to submodules.

color.advice

A boolean to enable/disable color in hints (e.g. when a push failed, see advice.* for a list). May be

set to always, false (or never) or auto (or true), in which case colors are used only when the error

output goes to a terminal. If unset, then the value of color.ui is used (auto by default).

color.advice.hint

Use customized color for hints.

color.blame.highlightRecent

Specify the line annotation color for git blame --color-by-age depending upon the age of the line.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

This setting should be set to a comma-separated list of color and date settings, starting and ending

with a color, the dates should be set from oldest to newest. The metadata will be colored with the

specified colors if the line was introduced before the given timestamp, overwriting older

timestamped colors.

Instead of an absolute timestamp relative timestamps work as well, e.g. 2.weeks.ago is valid to

address anything older than 2 weeks.

It defaults to blue,12 month ago,white,1 month ago,red, which colors everything older than one

year blue, recent changes between one month and one year old are kept white, and lines

introduced within the last month are colored red.

color.blame.repeatedLines

Use the specified color to colorize line annotations for git blame --color-lines, if they come from

the same commit as the preceding line. Defaults to cyan.

color.branch

A boolean to enable/disable color in the output of git-branch(1). May be set to always, false (or

never) or auto (or true), in which case colors are used only when the output is to a terminal. If

unset, then the value of color.ui is used (auto by default).

color.branch.<slot>

Use customized color for branch coloration. <slot> is one of current (the current branch), local (a

local branch), remote (a remote-tracking branch in refs/remotes/), upstream (upstream tracking

branch), plain (other refs).

color.diff

Whether to use ANSI escape sequences to add color to patches. If this is set to always, git-diff(1),

git-log(1), and git-show(1) will use color for all patches. If it is set to true or auto, those

commands will only use color when output is to the terminal. If unset, then the value of color.ui is

used (auto by default).

This does not affect git-format-patch(1) or the git-diff-* plumbing commands. Can be overridden

on the command line with the --color[=<when>] option.

color.diff.<slot>

Use customized color for diff colorization. <slot> specifies which part of the patch to use the

specified color, and is one of context (context text - plain is a historical synonym), meta
(metainformation), frag (hunk header), func (function in hunk header), old (removed lines), new
(added lines), commit (commit headers), whitespace (highlighting whitespace errors), oldMoved

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

(deleted lines), newMoved (added lines), oldMovedDimmed, oldMovedAlternative,

oldMovedAlternativeDimmed, newMovedDimmed, newMovedAlternative
newMovedAlternativeDimmed (See the <mode> setting of --color-moved in git-diff(1) for

details), contextDimmed, oldDimmed, newDimmed, contextBold, oldBold, and newBold (see git-
range-diff(1) for details).

color.decorate.<slot>

Use customized color for git log --decorate output. <slot> is one of branch, remoteBranch, tag,

stash or HEAD for local branches, remote-tracking branches, tags, stash and HEAD, respectively

and grafted for grafted commits.

color.grep

When set to always, always highlight matches. When false (or never), never. When set to true or

auto, use color only when the output is written to the terminal. If unset, then the value of color.ui
is used (auto by default).

color.grep.<slot>

Use customized color for grep colorization. <slot> specifies which part of the line to use the

specified color, and is one of

context
non-matching text in context lines (when using -A, -B, or -C)

filename
filename prefix (when not using -h)

function
function name lines (when using -p)

lineNumber
line number prefix (when using -n)

column
column number prefix (when using --column)

match
matching text (same as setting matchContext and matchSelected)

matchContext
matching text in context lines

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

matchSelected
matching text in selected lines. Also, used to customize the following git-log(1)

subcommands: --grep, --author and --committer.

selected
non-matching text in selected lines. Also, used to customize the following git-log(1)

subcommands: --grep, --author and --committer.

separator
separators between fields on a line (:, -, and =) and between hunks (--)

color.interactive

When set to always, always use colors for interactive prompts and displays (such as those used by

"git-add --interactive" and "git-clean --interactive"). When false (or never), never. When set to

true or auto, use colors only when the output is to the terminal. If unset, then the value of color.ui
is used (auto by default).

color.interactive.<slot>

Use customized color for git add --interactive and git clean --interactive output. <slot> may be

prompt, header, help or error, for four distinct types of normal output from interactive commands.

color.pager

A boolean to specify whether auto color modes should colorize output going to the pager. Defaults

to true; set this to false if your pager does not understand ANSI color codes.

color.push

A boolean to enable/disable color in push errors. May be set to always, false (or never) or auto (or

true), in which case colors are used only when the error output goes to a terminal. If unset, then

the value of color.ui is used (auto by default).

color.push.error

Use customized color for push errors.

color.remote

If set, keywords at the start of the line are highlighted. The keywords are "error", "warning",

"hint" and "success", and are matched case-insensitively. May be set to always, false (or never) or

auto (or true). If unset, then the value of color.ui is used (auto by default).

color.remote.<slot>

Use customized color for each remote keyword. <slot> may be hint, warning, success or error

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

which match the corresponding keyword.

color.showBranch

A boolean to enable/disable color in the output of git-show-branch(1). May be set to always, false
(or never) or auto (or true), in which case colors are used only when the output is to a terminal. If

unset, then the value of color.ui is used (auto by default).

color.status

A boolean to enable/disable color in the output of git-status(1). May be set to always, false (or

never) or auto (or true), in which case colors are used only when the output is to a terminal. If

unset, then the value of color.ui is used (auto by default).

color.status.<slot>

Use customized color for status colorization. <slot> is one of header (the header text of the status

message), added or updated (files which are added but not committed), changed (files which are

changed but not added in the index), untracked (files which are not tracked by Git), branch (the

current branch), nobranch (the color the no branch warning is shown in, defaulting to red),

localBranch or remoteBranch (the local and remote branch names, respectively, when branch and

tracking information is displayed in the status short-format), or unmerged (files which have

unmerged changes).

color.transport

A boolean to enable/disable color when pushes are rejected. May be set to always, false (or never)

or auto (or true), in which case colors are used only when the error output goes to a terminal. If

unset, then the value of color.ui is used (auto by default).

color.transport.rejected

Use customized color when a push was rejected.

color.ui

This variable determines the default value for variables such as color.diff and color.grep that

control the use of color per command family. Its scope will expand as more commands learn

configuration to set a default for the --color option. Set it to false or never if you prefer Git

commands not to use color unless enabled explicitly with some other configuration or the --color
option. Set it to always if you want all output not intended for machine consumption to use color,

to true or auto (this is the default since Git 1.8.4) if you want such output to use color when

written to the terminal.

column.ui

Specify whether supported commands should output in columns. This variable consists of a list of

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

tokens separated by spaces or commas:

These options control when the feature should be enabled (defaults to never):

always
always show in columns

never
never show in columns

auto
show in columns if the output is to the terminal

These options control layout (defaults to column). Setting any of these implies always if none of

always, never, or auto are specified.

column
fill columns before rows

row
fill rows before columns

plain
show in one column

Finally, these options can be combined with a layout option (defaults to nodense):

dense
make unequal size columns to utilize more space

nodense
make equal size columns

column.branch

Specify whether to output branch listing in git branch in columns. See column.ui for details.

column.clean

Specify the layout when list items in git clean -i, which always shows files and directories in

columns. See column.ui for details.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

column.status

Specify whether to output untracked files in git status in columns. See column.ui for details.

column.tag

Specify whether to output tag listing in git tag in columns. See column.ui for details.

commit.cleanup

This setting overrides the default of the --cleanup option in git commit. See git-commit(1) for

details. Changing the default can be useful when you always want to keep lines that begin with

comment character # in your log message, in which case you would do git config commit.cleanup
whitespace (note that you will have to remove the help lines that begin with # in the commit log

template yourself, if you do this).

commit.gpgSign

A boolean to specify whether all commits should be GPG signed. Use of this option when doing

operations such as rebase can result in a large number of commits being signed. It may be

convenient to use an agent to avoid typing your GPG passphrase several times.

commit.status

A boolean to enable/disable inclusion of status information in the commit message template when

using an editor to prepare the commit message. Defaults to true.

commit.template

Specify the pathname of a file to use as the template for new commit messages.

commit.verbose

A boolean or int to specify the level of verbose with git commit. See git-commit(1).

commitGraph.generationVersion

Specifies the type of generation number version to use when writing or reading the commit-graph

file. If version 1 is specified, then the corrected commit dates will not be written or read. Defaults

to 2.

commitGraph.maxNewFilters

Specifies the default value for the --max-new-filters option of git commit-graph write (c.f., git-
commit-graph(1)).

commitGraph.readChangedPaths

If true, then git will use the changed-path Bloom filters in the commit-graph file (if it exists, and

they are present). Defaults to true. See git-commit-graph(1) for more information.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

credential.helper

Specify an external helper to be called when a username or password credential is needed; the

helper may consult external storage to avoid prompting the user for the credentials. This is

normally the name of a credential helper with possible arguments, but may also be an absolute

path with arguments or, if preceded by !, shell commands.

Note that multiple helpers may be defined. See gitcredentials(7) for details and examples.

credential.useHttpPath

When acquiring credentials, consider the "path" component of an http or https URL to be

important. Defaults to false. See gitcredentials(7) for more information.

credential.username

If no username is set for a network authentication, use this username by default. See

credential.<context>.* below, and gitcredentials(7).

credential.<url>.*

Any of the credential.* options above can be applied selectively to some credentials. For example

"credential.https://example.com.username" would set the default username only for https

connections to example.com. See gitcredentials(7) for details on how URLs are matched.

credentialCache.ignoreSIGHUP

Tell git-credential-cache--daemon to ignore SIGHUP, instead of quitting.

credentialStore.lockTimeoutMS

The length of time, in milliseconds, for git-credential-store to retry when trying to lock the

credentials file. Value 0 means not to retry at all; -1 means to try indefinitely. Default is 1000 (i.e.,

retry for 1s).

completion.commands

This is only used by git-completion.bash to add or remove commands from the list of completed

commands. Normally only porcelain commands and a few select others are completed. You can

add more commands, separated by space, in this variable. Prefixing the command with - will

remove it from the existing list.

diff.autoRefreshIndex

When using git diff to compare with work tree files, do not consider stat-only change as changed.

Instead, silently run git update-index --refresh to update the cached stat information for paths

whose contents in the work tree match the contents in the index. This option defaults to true. Note

that this affects only git diff Porcelain, and not lower level diff commands such as git diff-files.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

diff.dirstat

A comma separated list of --dirstat parameters specifying the default behavior of the --dirstat
option to git-diff(1) and friends. The defaults can be overridden on the command line (using

--dirstat=<param1,param2,...>). The fallback defaults (when not changed by diff.dirstat) are

changes,noncumulative,3. The following parameters are available:

changes
Compute the dirstat numbers by counting the lines that have been removed from the source,

or added to the destination. This ignores the amount of pure code movements within a file. In

other words, rearranging lines in a file is not counted as much as other changes. This is the

default behavior when no parameter is given.

lines
Compute the dirstat numbers by doing the regular line-based diff analysis, and summing the

removed/added line counts. (For binary files, count 64-byte chunks instead, since binary files

have no natural concept of lines). This is a more expensive --dirstat behavior than the

changes behavior, but it does count rearranged lines within a file as much as other changes.

The resulting output is consistent with what you get from the other --*stat options.

files
Compute the dirstat numbers by counting the number of files changed. Each changed file

counts equally in the dirstat analysis. This is the computationally cheapest --dirstat behavior,

since it does not have to look at the file contents at all.

cumulative
Count changes in a child directory for the parent directory as well. Note that when using

cumulative, the sum of the percentages reported may exceed 100%. The default

(non-cumulative) behavior can be specified with the noncumulative parameter.

<limit>

An integer parameter specifies a cut-off percent (3% by default). Directories contributing less

than this percentage of the changes are not shown in the output.

Example: The following will count changed files, while ignoring directories with less than 10% of

the total amount of changed files, and accumulating child directory counts in the parent

directories: files,10,cumulative.

diff.statGraphWidth

Limit the width of the graph part in --stat output. If set, applies to all commands generating --stat

output except format-patch.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

diff.context

Generate diffs with <n> lines of context instead of the default of 3. This value is overridden by the

-U option.

diff.interHunkContext

Show the context between diff hunks, up to the specified number of lines, thereby fusing the

hunks that are close to each other. This value serves as the default for the --inter-hunk-context
command line option.

diff.external

If this config variable is set, diff generation is not performed using the internal diff machinery, but

using the given command. Can be overridden with the ‘GIT_EXTERNAL_DIFF’ environment

variable. The command is called with parameters as described under "git Diffs" in git(1). Note: if

you want to use an external diff program only on a subset of your files, you might want to use

gitattributes(5) instead.

diff.ignoreSubmodules

Sets the default value of --ignore-submodules. Note that this affects only git diff Porcelain, and

not lower level diff commands such as git diff-files. git checkout and git switch also honor this

setting when reporting uncommitted changes. Setting it to all disables the submodule summary

normally shown by git commit and git status when status.submoduleSummary is set unless it is

overridden by using the --ignore-submodules command-line option. The git submodule commands

are not affected by this setting. By default this is set to untracked so that any untracked

submodules are ignored.

diff.mnemonicPrefix

If set, git diff uses a prefix pair that is different from the standard "a/" and "b/" depending on what

is being compared. When this configuration is in effect, reverse diff output also swaps the order of

the prefixes:

git diff
compares the (i)ndex and the (w)ork tree;

git diff HEAD
compares a (c)ommit and the (w)ork tree;

git diff --cached
compares a (c)ommit and the (i)ndex;

git diff HEAD:file1 file2

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

compares an (o)bject and a (w)ork tree entity;

git diff --no-index a b
compares two non-git things (1) and (2).

diff.noprefix

If set, git diff does not show any source or destination prefix.

diff.relative

If set to true, git diff does not show changes outside of the directory and show pathnames relative

to the current directory.

diff.orderFile

File indicating how to order files within a diff. See the -O option to git-diff(1) for details. If

diff.orderFile is a relative pathname, it is treated as relative to the top of the working tree.

diff.renameLimit

The number of files to consider in the exhaustive portion of copy/rename detection; equivalent to

the git diff option -l. If not set, the default value is currently 1000. This setting has no effect if

rename detection is turned off.

diff.renames

Whether and how Git detects renames. If set to "false", rename detection is disabled. If set to

"true", basic rename detection is enabled. If set to "copies" or "copy", Git will detect copies, as

well. Defaults to true. Note that this affects only git diff Porcelain like git-diff(1) and git-log(1),

and not lower level commands such as git-diff-files(1).

diff.suppressBlankEmpty

A boolean to inhibit the standard behavior of printing a space before each empty output line.

Defaults to false.

diff.submodule

Specify the format in which differences in submodules are shown. The "short" format just shows

the names of the commits at the beginning and end of the range. The "log" format lists the

commits in the range like git-submodule(1) summary does. The "diff" format shows an inline diff

of the changed contents of the submodule. Defaults to "short".

diff.wordRegex

A POSIX Extended Regular Expression used to determine what is a "word" when performing

word-by-word difference calculations. Character sequences that match the regular expression are

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

"words", all other characters are ignorable whitespace.

diff.<driver>.command

The custom diff driver command. See gitattributes(5) for details.

diff.<driver>.xfuncname

The regular expression that the diff driver should use to recognize the hunk header. A built-in

pattern may also be used. See gitattributes(5) for details.

diff.<driver>.binary

Set this option to true to make the diff driver treat files as binary. See gitattributes(5) for details.

diff.<driver>.textconv

The command that the diff driver should call to generate the text-converted version of a file. The

result of the conversion is used to generate a human-readable diff. See gitattributes(5) for details.

diff.<driver>.wordRegex

The regular expression that the diff driver should use to split words in a line. See gitattributes(5)

for details.

diff.<driver>.cachetextconv

Set this option to true to make the diff driver cache the text conversion outputs. See

gitattributes(5) for details.

araxis
Use Araxis Merge (requires a graphical session)

bc
Use Beyond Compare (requires a graphical session)

bc3
Use Beyond Compare (requires a graphical session)

bc4
Use Beyond Compare (requires a graphical session)

codecompare
Use Code Compare (requires a graphical session)

deltawalker

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Use DeltaWalker (requires a graphical session)

diffmerge
Use DiffMerge (requires a graphical session)

diffuse
Use Diffuse (requires a graphical session)

ecmerge
Use ECMerge (requires a graphical session)

emerge
Use Emacs’ Emerge

examdiff
Use ExamDiff Pro (requires a graphical session)

guiffy
Use Guiffy’s Diff Tool (requires a graphical session)

gvimdiff
Use gVim (requires a graphical session)

kdiff3
Use KDiff3 (requires a graphical session)

kompare
Use Kompare (requires a graphical session)

meld
Use Meld (requires a graphical session)

nvimdiff
Use Neovim

opendiff
Use FileMerge (requires a graphical session)

p4merge
Use HelixCore P4Merge (requires a graphical session)

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

smerge
Use Sublime Merge (requires a graphical session)

tkdiff
Use TkDiff (requires a graphical session)

vimdiff
Use Vim

winmerge
Use WinMerge (requires a graphical session)

xxdiff
Use xxdiff (requires a graphical session)

diff.indentHeuristic

Set this option to false to disable the default heuristics that shift diff hunk boundaries to make

patches easier to read.

diff.algorithm

Choose a diff algorithm. The variants are as follows:

default, myers
The basic greedy diff algorithm. Currently, this is the default.

minimal
Spend extra time to make sure the smallest possible diff is produced.

patience
Use "patience diff" algorithm when generating patches.

histogram
This algorithm extends the patience algorithm to "support low-occurrence common

elements".

diff.wsErrorHighlight

Highlight whitespace errors in the context, old or new lines of the diff. Multiple values are

separated by comma, none resets previous values, default reset the list to new and all is a

shorthand for old,new,context. The whitespace errors are colored with color.diff.whitespace. The

command line option --ws-error-highlight=<kind> overrides this setting.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

diff.colorMoved

If set to either a valid <mode> or a true value, moved lines in a diff are colored differently, for

details of valid modes see --color-moved in git-diff(1). If simply set to true the default color mode

will be used. When set to false, moved lines are not colored.

diff.colorMovedWS

When moved lines are colored using e.g. the diff.colorMoved setting, this option controls the

<mode> how spaces are treated for details of valid modes see --color-moved-ws in git-diff(1).

diff.tool

Controls which diff tool is used by git-difftool(1). This variable overrides the value configured in

merge.tool. The list below shows the valid built-in values. Any other value is treated as a custom

diff tool and requires that a corresponding difftool.<tool>.cmd variable is defined.

diff.guitool

Controls which diff tool is used by git-difftool(1) when the -g/--gui flag is specified. This variable

overrides the value configured in merge.guitool. The list below shows the valid built-in values.

Any other value is treated as a custom diff tool and requires that a corresponding

difftool.<guitool>.cmd variable is defined.

difftool.<tool>.cmd

Specify the command to invoke the specified diff tool. The specified command is evaluated in

shell with the following variables available: LOCAL is set to the name of the temporary file

containing the contents of the diff pre-image and REMOTE is set to the name of the temporary

file containing the contents of the diff post-image.

See the --tool=<tool> option in git-difftool(1) for more details.

difftool.<tool>.path

Override the path for the given tool. This is useful in case your tool is not in the PATH.

difftool.trustExitCode

Exit difftool if the invoked diff tool returns a non-zero exit status.

See the --trust-exit-code option in git-difftool(1) for more details.

difftool.prompt

Prompt before each invocation of the diff tool.

difftool.guiDefault

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Set true to use the diff.guitool by default (equivalent to specifying the --gui argument), or auto to

select diff.guitool or diff.tool depending on the presence of a DISPLAY environment variable

value. The default is false, where the --gui argument must be provided explicitly for the

diff.guitool to be used.

extensions.objectFormat

Specify the hash algorithm to use. The acceptable values are sha1 and sha256. If not specified,

sha1 is assumed. It is an error to specify this key unless core.repositoryFormatVersion is 1.

Note that this setting should only be set by git-init(1) or git-clone(1). Trying to change it after

initialization will not work and will produce hard-to-diagnose issues.

extensions.worktreeConfig

If enabled, then worktrees will load config settings from the $GIT_DIR/config.worktree file in

addition to the $GIT_COMMON_DIR/config file. Note that $GIT_COMMON_DIR and

$GIT_DIR are the same for the main working tree, while other working trees have $GIT_DIR
equal to $GIT_COMMON_DIR/worktrees/<id>/. The settings in the config.worktree file will

override settings from any other config files.

When enabling extensions.worktreeConfig, you must be careful to move certain values from the

common config file to the main working tree’s config.worktree file, if present:

+o

must be moved from $GIT_COMMON_DIR/config to $GIT_COMMON_DIR/config.worktree.

+o

core.bare is true, then it must be moved from $GIT_COMMON_DIR/config to

$GIT_COMMON_DIR/config.worktree.

It may also be beneficial to adjust the locations of core.sparseCheckout and

core.sparseCheckoutCone depending on your desire for customizable sparse-checkout settings for

each worktree. By default, the git sparse-checkout builtin enables extensions.worktreeConfig, assigns

these config values on a per-worktree basis, and uses the $GIT_DIR/info/sparse-checkout file to

specify the sparsity for each worktree independently. See git-sparse-checkout(1) for more details.

For historical reasons, extensions.worktreeConfig is respected regardless of the

core.repositoryFormatVersion setting.

fastimport.unpackLimit

If the number of objects imported by git-fast-import(1) is below this limit, then the objects will be

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

unpacked into loose object files. However if the number of imported objects equals

or exceeds this limit then the pack will be stored as a pack. Storing the pack from a

fast-import can make the import operation complete faster, especially on slow

filesystems. If not set, the value of transfer.unpackLimit is used instead.

feature.*

The config settings that start with feature. modify the defaults of a group of other config settings.

These groups are created by the Git developer community as recommended defaults and are

subject to change. In particular, new config options may be added with different defaults.

feature.experimental

Enable config options that are new to Git, and are being considered for future defaults. Config

settings included here may be added or removed with each release, including minor version

updates. These settings may have unintended interactions since they are so new. Please enable this

setting if you are interested in providing feedback on experimental features. The new default

values are:

+o

may improve fetch negotiation times by skipping more commits at a time, reducing the number of

round trips.

+o

may improve bitmap traversal times by walking fewer objects.

feature.manyFiles

Enable config options that optimize for repos with many files in the working directory. With many

files, commands such as git status and git checkout may be slow and these new defaults improve

performance:

+o

speeds up index writes by not computing a trailing checksum. Note that this will cause Git versions

earlier than 2.13.0 to refuse to parse the index and Git versions earlier than 2.40.0 will report a

corrupted index during git fsck.

+o

enables path-prefix compression in the index.

+o

enables the untracked cache. This setting assumes that mtime is working on your machine.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

fetch.recurseSubmodules

This option controls whether git fetch (and the underlying fetch in git pull) will recursively fetch

into populated submodules. This option can be set either to a boolean value or to on-demand.

Setting it to a boolean changes the behavior of fetch and pull to recurse unconditionally into

submodules when set to true or to not recurse at all when set to false. When set to on-demand,

fetch and pull will only recurse into a populated submodule when its superproject retrieves a

commit that updates the submodule’s reference. Defaults to on-demand, or to the value of

submodule.recurse if set.

fetch.fsckObjects

If it is set to true, git-fetch-pack will check all fetched objects. See transfer.fsckObjects for what’s

checked. Defaults to false. If not set, the value of transfer.fsckObjects is used instead.

fetch.fsck.<msg-id>

Acts like fsck.<msg-id>, but is used by git-fetch-pack(1) instead of git-fsck(1). See the

fsck.<msg-id> documentation for details.

fetch.fsck.skipList

Acts like fsck.skipList, but is used by git-fetch-pack(1) instead of git-fsck(1). See the fsck.skipList
documentation for details.

fetch.unpackLimit

If the number of objects fetched over the Git native transfer is below this limit, then the objects

will be unpacked into loose object files. However if the number of received objects equals or

exceeds this limit then the received pack will be stored as a pack, after adding any missing delta

bases. Storing the pack from a push can make the push operation complete faster, especially on

slow filesystems. If not set, the value of transfer.unpackLimit is used instead.

fetch.prune

If true, fetch will automatically behave as if the --prune option was given on the command line.

See also remote.<name>.prune and the PRUNING section of git-fetch(1).

fetch.pruneTags

If true, fetch will automatically behave as if the refs/tags/*:refs/tags/* refspec was provided when

pruning, if not set already. This allows for setting both this option and fetch.prune to maintain a

1=1 mapping to upstream refs. See also remote.<name>.pruneTags and the PRUNING section of

git-fetch(1).

fetch.output

Control how ref update status is printed. Valid values are full and compact. Default value is full.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

See section OUTPUT in git-fetch(1) for detail.

fetch.negotiationAlgorithm

Control how information about the commits in the local repository is sent when negotiating the

contents of the packfile to be sent by the server. Set to "consecutive" to use an algorithm that

walks over consecutive commits checking each one. Set to "skipping" to use an algorithm that

skips commits in an effort to converge faster, but may result in a larger-than-necessary packfile; or

set to "noop" to not send any information at all, which will almost certainly result in a

larger-than-necessary packfile, but will skip the negotiation step. Set to "default" to override

settings made previously and use the default behaviour. The default is normally "consecutive", but

if feature.experimental is true, then the default is "skipping". Unknown values will cause git fetch

to error out.

See also the --negotiate-only and --negotiation-tip options to git-fetch(1).

fetch.showForcedUpdates

Set to false to enable --no-show-forced-updates in git-fetch(1) and git-pull(1) commands. Defaults

to true.

fetch.parallel

Specifies the maximal number of fetch operations to be run in parallel at a time (submodules, or

remotes when the --multiple option of git-fetch(1) is in effect).

A value of 0 will give some reasonable default. If unset, it defaults to 1.

For submodules, this setting can be overridden using the submodule.fetchJobs config setting.

fetch.writeCommitGraph

Set to true to write a commit-graph after every git fetch command that downloads a pack-file from

a remote. Using the --split option, most executions will create a very small commit-graph file on

top of the existing commit-graph file(s). Occasionally, these files will merge and the write may

take longer. Having an updated commit-graph file helps performance of many Git commands,

including git merge-base, git push -f, and git log --graph. Defaults to false.

fetch.bundleURI

This value stores a URI for downloading Git object data from a bundle URI before performing an

incremental fetch from the origin Git server. This is similar to how the --bundle-uri option

behaves in git-clone(1). git clone --bundle-uri will set the fetch.bundleURI value if the supplied

bundle URI contains a bundle list that is organized for incremental fetches.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

If you modify this value and your repository has a fetch.bundleCreationToken value, then remove

that fetch.bundleCreationToken value before fetching from the new bundle URI.

fetch.bundleCreationToken

When using fetch.bundleURI to fetch incrementally from a bundle list that uses the

"creationToken" heuristic, this config value stores the maximum creationToken value of the

downloaded bundles. This value is used to prevent downloading bundles in the future if the

advertised creationToken is not strictly larger than this value.

The creation token values are chosen by the provider serving the specific bundle URI. If you

modify the URI at fetch.bundleURI, then be sure to remove the value for the

fetch.bundleCreationToken value before fetching.

format.attach

Enable multipart/mixed attachments as the default for format-patch. The value can also be a

double quoted string which will enable attachments as the default and set the value as the

boundary. See the --attach option in git-format-patch(1). To countermand an earlier value, set it to

an empty string.

format.from

Provides the default value for the --from option to format-patch. Accepts a boolean value, or a

name and email address. If false, format-patch defaults to --no-from, using commit authors

directly in the "From:" field of patch mails. If true, format-patch defaults to --from, using your

committer identity in the "From:" field of patch mails and including a "From:" field in the body of

the patch mail if different. If set to a non-boolean value, format-patch uses that value instead of

your committer identity. Defaults to false.

format.forceInBodyFrom

Provides the default value for the --[no-]force-in-body-from option to format-patch. Defaults to

false.

format.numbered

A boolean which can enable or disable sequence numbers in patch subjects. It defaults to "auto"

which enables it only if there is more than one patch. It can be enabled or disabled for all

messages by setting it to "true" or "false". See --numbered option in git-format-patch(1).

format.headers

Additional email headers to include in a patch to be submitted by mail. See git-format-patch(1).

format.to, format.cc

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Additional recipients to include in a patch to be submitted by mail. See the --to and --cc options in

git-format-patch(1).

format.subjectPrefix

The default for format-patch is to output files with the [PATCH] subject prefix. Use this variable

to change that prefix.

format.coverFromDescription

The default mode for format-patch to determine which parts of the cover letter will be populated

using the branch’s description. See the --cover-from-description option in git-format-patch(1).

format.signature

The default for format-patch is to output a signature containing the Git version number. Use this

variable to change that default. Set this variable to the empty string ("") to suppress signature

generation.

format.signatureFile

Works just like format.signature except the contents of the file specified by this variable will be

used as the signature.

format.suffix

The default for format-patch is to output files with the suffix .patch. Use this variable to change

that suffix (make sure to include the dot if you want it).

format.encodeEmailHeaders

Encode email headers that have non-ASCII characters with "Q-encoding" (described in RFC

2047) for email transmission. Defaults to true.

format.pretty

The default pretty format for log/show/whatchanged command, See git-log(1), git-show(1), git-
whatchanged(1).

format.thread

The default threading style for git format-patch. Can be a boolean value, or shallow or deep.

shallow threading makes every mail a reply to the head of the series, where the head is chosen

from the cover letter, the --in-reply-to, and the first patch mail, in this order. deep threading

makes every mail a reply to the previous one. A true boolean value is the same as shallow, and a

false value disables threading.

format.signOff

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

A boolean value which lets you enable the -s/--signoff option of format-patch by default. Note:
Adding the Signed-off-by trailer to a patch should be a conscious act and means that you certify

you have the rights to submit this work under the same open source license. Please see the

SubmittingPatches document for further discussion.

format.coverLetter

A boolean that controls whether to generate a cover-letter when format-patch is invoked, but in

addition can be set to "auto", to generate a cover-letter only when there’s more than one patch.

Default is false.

format.outputDirectory

Set a custom directory to store the resulting files instead of the current working directory. All

directory components will be created.

format.filenameMaxLength

The maximum length of the output filenames generated by the format-patch command; defaults to

64. Can be overridden by the --filename-max-length=<n> command line option.

format.useAutoBase

A boolean value which lets you enable the --base=auto option of format-patch by default. Can also

be set to "whenAble" to allow enabling --base=auto if a suitable base is available, but to skip

adding base info otherwise without the format dying.

format.notes

Provides the default value for the --notes option to format-patch. Accepts a boolean value, or a ref

which specifies where to get notes. If false, format-patch defaults to --no-notes. If true,

format-patch defaults to --notes. If set to a non-boolean value, format-patch defaults to

--notes=<ref>, where ref is the non-boolean value. Defaults to false.

If one wishes to use the ref ref/notes/true, please use that literal instead.

This configuration can be specified multiple times in order to allow multiple notes refs to be

included. In that case, it will behave similarly to multiple --[no-]notes[=] options passed in. That

is, a value of true will show the default notes, a value of <ref> will also show notes from that

notes ref and a value of false will negate previous configurations and not show notes.

For example,

[format]

notes = true

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

notes = foo

notes = false

notes = bar

will only show notes from refs/notes/bar.

format.mboxrd

A boolean value which enables the robust "mboxrd" format when --stdout is in use to escape

"^>+From " lines.

format.noprefix

If set, do not show any source or destination prefix in patches. This is equivalent to the

diff.noprefix option used by git diff (but which is not respected by format-patch). Note that by

setting this, the receiver of any patches you generate will have to apply them using the -p0 option.

filter.<driver>.clean

The command which is used to convert the content of a worktree file to a blob upon checkin. See

gitattributes(5) for details.

filter.<driver>.smudge

The command which is used to convert the content of a blob object to a worktree file upon

checkout. See gitattributes(5) for details.

fsck.<msg-id>

During fsck git may find issues with legacy data which wouldn’t be generated by current versions

of git, and which wouldn’t be sent over the wire if transfer.fsckObjects was set. This feature is

intended to support working with legacy repositories containing such data.

Setting fsck.<msg-id> will be picked up by git-fsck(1), but to accept pushes of such data set

receive.fsck.<msg-id> instead, or to clone or fetch it set fetch.fsck.<msg-id>.

The rest of the documentation discusses fsck.* for brevity, but the same applies for the

corresponding receive.fsck.* and fetch.<msg-id>.*. variables.

Unlike variables like color.ui and core.editor the receive.fsck.<msg-id> and fetch.fsck.<msg-id>
variables will not fall back on the fsck.<msg-id> configuration if they aren’t set. To uniformly

configure the same fsck settings in different circumstances all three of them they must all set to

the same values.

When fsck.<msg-id> is set, errors can be switched to warnings and vice versa by configuring the

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

fsck.<msg-id> setting where the <msg-id> is the fsck message ID and the value is one of error,

warn or ignore. For convenience, fsck prefixes the error/warning with the message ID, e.g.

"missingEmail: invalid author/committer line - missing email" means that setting

fsck.missingEmail = ignore will hide that issue.

In general, it is better to enumerate existing objects with problems with fsck.skipList, instead of

listing the kind of breakages these problematic objects share to be ignored, as doing the latter will

allow new instances of the same breakages go unnoticed.

Setting an unknown fsck.<msg-id> value will cause fsck to die, but doing the same for

receive.fsck.<msg-id> and fetch.fsck.<msg-id> will only cause git to warn.

See Fsck Messages section of git-fsck(1) for supported values of <msg-id>.

fsck.skipList

The path to a list of object names (i.e. one unabbreviated SHA-1 per line) that are known to be

broken in a non-fatal way and should be ignored. On versions of Git 2.20 and later comments (#),

empty lines, and any leading and trailing whitespace is ignored. Everything but a SHA-1 per line

will error out on older versions.

This feature is useful when an established project should be accepted despite early commits

containing errors that can be safely ignored such as invalid committer email addresses. Note:

corrupt objects cannot be skipped with this setting.

Like fsck.<msg-id> this variable has corresponding receive.fsck.skipList and fetch.fsck.skipList
variants.

Unlike variables like color.ui and core.editor the receive.fsck.skipList and fetch.fsck.skipList
variables will not fall back on the fsck.skipList configuration if they aren’t set. To uniformly

configure the same fsck settings in different circumstances all three of them they must all set to

the same values.

Older versions of Git (before 2.20) documented that the object names list should be sorted. This

was never a requirement, the object names could appear in any order, but when reading the list we

tracked whether the list was sorted for the purposes of an internal binary search implementation,

which could save itself some work with an already sorted list. Unless you had a humongous list

there was no reason to go out of your way to pre-sort the list. After Git version 2.20 a hash

implementation is used instead, so there’s now no reason to pre-sort the list.

fsmonitor.allowRemote

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

By default, the fsmonitor daemon refuses to work against network-mounted repositories. Setting

fsmonitor.allowRemote to true overrides this behavior. Only respected when core.fsmonitor is set

to true.

fsmonitor.socketDir

This Mac OS-specific option, if set, specifies the directory in which to create the Unix domain

socket used for communication between the fsmonitor daemon and various Git commands. The

directory must reside on a native Mac OS filesystem. Only respected when core.fsmonitor is set to

true.

gc.aggressiveDepth

The depth parameter used in the delta compression algorithm used by git gc --aggressive. This

defaults to 50, which is the default for the --depth option when --aggressive isn’t in use.

See the documentation for the --depth option in git-repack(1) for more details.

gc.aggressiveWindow

The window size parameter used in the delta compression algorithm used by git gc --aggressive.

This defaults to 250, which is a much more aggressive window size than the default --window of

10.

See the documentation for the --window option in git-repack(1) for more details.

gc.auto

When there are approximately more than this many loose objects in the repository, git gc --auto
will pack them. Some Porcelain commands use this command to perform a light-weight garbage

collection from time to time. The default value is 6700.

Setting this to 0 disables not only automatic packing based on the number of loose objects, but any

other heuristic git gc --auto will otherwise use to determine if there’s work to do, such as

gc.autoPackLimit.

gc.autoPackLimit

When there are more than this many packs that are not marked with *.keep file in the repository,

git gc --auto consolidates them into one larger pack. The default value is 50. Setting this to 0

disables it. Setting gc.auto to 0 will also disable this.

See the gc.bigPackThreshold configuration variable below. When in use, it’ll affect how the auto

pack limit works.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

gc.autoDetach

Make git gc --auto return immediately and run in background if the system supports it. Default is

true.

gc.bigPackThreshold

If non-zero, all non-cruft packs larger than this limit are kept when git gc is run. This is very

similar to --keep-largest-pack except that all non-cruft packs that meet the threshold are kept, not

just the largest pack. Defaults to zero. Common unit suffixes of k, m, or g are supported.

Note that if the number of kept packs is more than gc.autoPackLimit, this configuration variable is

ignored, all packs except the base pack will be repacked. After this the number of packs should go

below gc.autoPackLimit and gc.bigPackThreshold should be respected again.

If the amount of memory estimated for git repack to run smoothly is not available and

gc.bigPackThreshold is not set, the largest pack will also be excluded (this is the equivalent of

running git gc with --keep-largest-pack).

gc.writeCommitGraph

If true, then gc will rewrite the commit-graph file when git-gc(1) is run. When using git gc --auto
the commit-graph will be updated if housekeeping is required. Default is true. See git-commit-
graph(1) for details.

gc.logExpiry

If the file gc.log exists, then git gc --auto will print its content and exit with status zero instead of

running unless that file is more than gc.logExpiry old. Default is "1.day". See gc.pruneExpire for

more ways to specify its value.

gc.packRefs

Running git pack-refs in a repository renders it unclonable by Git versions prior to 1.5.1.2 over

dumb transports such as HTTP. This variable determines whether git gc runs git pack-refs. This

can be set to notbare to enable it within all non-bare repos or it can be set to a boolean value. The

default is true.

gc.cruftPacks

Store unreachable objects in a cruft pack (see git-repack(1)) instead of as loose objects. The

default is true.

gc.pruneExpire

When git gc is run, it will call prune --expire 2.weeks.ago (and repack --cruft --cruft-expiration

2.weeks.ago if using cruft packs via gc.cruftPacks or --cruft). Override the grace period with this

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

config variable. The value "now" may be used to disable this grace period and always prune

unreachable objects immediately, or "never" may be used to suppress pruning. This feature helps

prevent corruption when git gc runs concurrently with another process writing to the repository;

see the "NOTES" section of git-gc(1).

gc.worktreePruneExpire

When git gc is run, it calls git worktree prune --expire 3.months.ago. This config variable can be

used to set a different grace period. The value "now" may be used to disable the grace period and

prune $GIT_DIR/worktrees immediately, or "never" may be used to suppress pruning.

gc.reflogExpire, gc.<pattern>.reflogExpire

git reflog expire removes reflog entries older than this time; defaults to 90 days. The value "now"

expires all entries immediately, and "never" suppresses expiration altogether. With "<pattern>"

(e.g. "refs/stash") in the middle the setting applies only to the refs that match the <pattern>.

gc.reflogExpireUnreachable, gc.<pattern>.reflogExpireUnreachable

git reflog expire removes reflog entries older than this time and are not reachable from the current

tip; defaults to 30 days. The value "now" expires all entries immediately, and "never" suppresses

expiration altogether. With "<pattern>" (e.g. "refs/stash") in the middle, the setting applies only to

the refs that match the <pattern>.

These types of entries are generally created as a result of using git commit --amend or git rebase
and are the commits prior to the amend or rebase occurring. Since these changes are not part of the

current project most users will want to expire them sooner, which is why the default is more

aggressive than gc.reflogExpire.

gc.recentObjectsHook

When considering whether or not to remove an object (either when generating a cruft pack or

storing unreachable objects as loose), use the shell to execute the specified command(s). Interpret

their output as object IDs which Git will consider as "recent", regardless of their age. By treating

their mtimes as "now", any objects (and their descendants) mentioned in the output will be kept

regardless of their true age.

Output must contain exactly one hex object ID per line, and nothing else. Objects which cannot be

found in the repository are ignored. Multiple hooks are supported, but all must exit successfully,

else the operation (either generating a cruft pack or unpacking unreachable objects) will be halted.

gc.rerereResolved

Records of conflicted merge you resolved earlier are kept for this many days when git rerere gc is

run. You can also use more human-readable "1.month.ago", etc. The default is 60 days. See git-

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

rerere(1).

gc.rerereUnresolved

Records of conflicted merge you have not resolved are kept for this many days when git rerere gc

is run. You can also use more human-readable "1.month.ago", etc. The default is 15 days. See git-
rerere(1).

gitcvs.commitMsgAnnotation

Append this string to each commit message. Set to empty string to disable this feature. Defaults to

"via git-CVS emulator".

gitcvs.enabled

Whether the CVS server interface is enabled for this repository. See git-cvsserver(1).

gitcvs.logFile

Path to a log file where the CVS server interface well... logs various stuff. See git-cvsserver(1).

gitcvs.usecrlfattr

If true, the server will look up the end-of-line conversion attributes for files to determine the -k
modes to use. If the attributes force Git to treat a file as text, the -k mode will be left blank so CVS

clients will treat it as text. If they suppress text conversion, the file will be set with -kb mode,

which suppresses any newline munging the client might otherwise do. If the attributes do not

allow the file type to be determined, then gitcvs.allBinary is used. See gitattributes(5).

gitcvs.allBinary

This is used if gitcvs.usecrlfattr does not resolve the correct -kb mode to use. If true, all

unresolved files are sent to the client in mode -kb. This causes the client to treat them as binary

files, which suppresses any newline munging it otherwise might do. Alternatively, if it is set to

"guess", then the contents of the file are examined to decide if it is binary, similar to core.autocrlf.

gitcvs.dbName

Database used by git-cvsserver to cache revision information derived from the Git repository. The

exact meaning depends on the used database driver, for SQLite (which is the default driver) this is

a filename. Supports variable substitution (see git-cvsserver(1) for details). May not contain

semicolons (;). Default: %Ggitcvs.%m.sqlite

gitcvs.dbDriver

Used Perl DBI driver. You can specify any available driver for this here, but it might not work.

git-cvsserver is tested with DBD::SQLite, reported to work with DBD::Pg, and reported not to

work with DBD::mysql. Experimental feature. May not contain double colons (:). Default:

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

SQLite. See git-cvsserver(1).

gitcvs.dbUser, gitcvs.dbPass

Database user and password. Only useful if setting gitcvs.dbDriver, since SQLite has no concept

of database users and/or passwords. gitcvs.dbUser supports variable substitution (see git-
cvsserver(1) for details).

gitcvs.dbTableNamePrefix

Database table name prefix. Prepended to the names of any database tables used, allowing a single

database to be used for several repositories. Supports variable substitution (see git-cvsserver(1) for

details). Any non-alphabetic characters will be replaced with underscores.

All gitcvs variables except for gitcvs.usecrlfattr and gitcvs.allBinary can also be specified as

gitcvs.<access_method>.<varname> (where access_method is one of "ext" and "pserver") to make

them apply only for the given access method.

gitweb.category, gitweb.description, gitweb.owner, gitweb.url

See gitweb(1) for description.

gitweb.avatar, gitweb.blame, gitweb.grep, gitweb.highlight, gitweb.patches, gitweb.pickaxe,

gitweb.remote_heads, gitweb.showSizes, gitweb.snapshot

See gitweb.conf(5) for description.

grep.lineNumber

If set to true, enable -n option by default.

grep.column

If set to true, enable the --column option by default.

grep.patternType

Set the default matching behavior. Using a value of basic, extended, fixed, or perl will enable the

--basic-regexp, --extended-regexp, --fixed-strings, or --perl-regexp option accordingly, while the

value default will use the grep.extendedRegexp option to choose between basic and extended.

grep.extendedRegexp

If set to true, enable --extended-regexp option by default. This option is ignored when the

grep.patternType option is set to a value other than default.

grep.threads

Number of grep worker threads to use. If unset (or set to 0), Git will use as many threads as the

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

number of logical cores available.

grep.fullName

If set to true, enable --full-name option by default.

grep.fallbackToNoIndex

If set to true, fall back to git grep --no-index if git grep is executed outside of a git repository.

Defaults to false.

gpg.program

Use this custom program instead of "gpg" found on $PATH when making or verifying a PGP

signature. The program must support the same command-line interface as GPG, namely, to verify

a detached signature, "gpg --verify $signature - <$file" is run, and the program is expected to

signal a good signature by exiting with code 0, and to generate an ASCII-armored detached

signature, the standard input of "gpg -bsau $key" is fed with the contents to be signed, and the

program is expected to send the result to its standard output.

gpg.format

Specifies which key format to use when signing with --gpg-sign. Default is "openpgp". Other

possible values are "x509", "ssh".

See gitformat-signature(5) for the signature format, which differs based on the selected

gpg.format.

gpg.<format>.program

Use this to customize the program used for the signing format you chose. (see gpg.program and

gpg.format) gpg.program can still be used as a legacy synonym for gpg.openpgp.program. The

default value for gpg.x509.program is "gpgsm" and gpg.ssh.program is "ssh-keygen".

gpg.minTrustLevel

Specifies a minimum trust level for signature verification. If this option is unset, then signature

verification for merge operations require a key with at least marginal trust. Other operations that

perform signature verification require a key with at least undefined trust. Setting this option

overrides the required trust-level for all operations. Supported values, in increasing order of

significance:

+o

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

+o

+o

gpg.ssh.defaultKeyCommand

This command that will be run when user.signingkey is not set and a ssh signature is requested.

On successful exit a valid ssh public key prefixed with key:: is expected in the first line of its

output. This allows for a script doing a dynamic lookup of the correct public key when it is

impractical to statically configure user.signingKey. For example when keys or SSH Certificates

are rotated frequently or selection of the right key depends on external factors unknown to git.

gpg.ssh.allowedSignersFile

A file containing ssh public keys which you are willing to trust. The file consists of one or more

lines of principals followed by an ssh public key. e.g.: user1@example.com,user2@example.com
ssh-rsa AAAAX1... See ssh-keygen(1) "ALLOWED SIGNERS" for details. The principal is only

used to identify the key and is available when verifying a signature.

SSH has no concept of trust levels like gpg does. To be able to differentiate between valid

signatures and trusted signatures the trust level of a signature verification is set to fully when the

public key is present in the allowedSignersFile. Otherwise the trust level is undefined and git

verify-commit/tag will fail.

This file can be set to a location outside of the repository and every developer maintains their own

trust store. A central repository server could generate this file automatically from ssh keys with

push access to verify the code against. In a corporate setting this file is probably generated at a

global location from automation that already handles developer ssh keys.

A repository that only allows signed commits can store the file in the repository itself using a path

relative to the top-level of the working tree. This way only committers with an already valid key

can add or change keys in the keyring.

Since OpensSSH 8.8 this file allows specifying a key lifetime using valid-after & valid-before

options. Git will mark signatures as valid if the signing key was valid at the time of the signature’s

creation. This allows users to change a signing key without invalidating all previously made

signatures.

Using a SSH CA key with the cert-authority option (see ssh-keygen(1) "CERTIFICATES") is also

valid.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

gpg.ssh.revocationFile

Either a SSH KRL or a list of revoked public keys (without the principal prefix). See

ssh-keygen(1) for details. If a public key is found in this file then it will always be treated as

having trust level "never" and signatures will show as invalid.

gui.commitMsgWidth

Defines how wide the commit message window is in the git-gui(1). "75" is the default.

gui.diffContext

Specifies how many context lines should be used in calls to diff made by the git-gui(1). The

default is "5".

gui.displayUntracked

Determines if git-gui(1) shows untracked files in the file list. The default is "true".

gui.encoding

Specifies the default character encoding to use for displaying of file contents in git-gui(1) and

gitk(1). It can be overridden by setting the encoding attribute for relevant files (see

gitattributes(5)). If this option is not set, the tools default to the locale encoding.

gui.matchTrackingBranch

Determines if new branches created with git-gui(1) should default to tracking remote branches

with matching names or not. Default: "false".

gui.newBranchTemplate

Is used as suggested name when creating new branches using the git-gui(1).

gui.pruneDuringFetch

"true" if git-gui(1) should prune remote-tracking branches when performing a fetch. The default

value is "false".

gui.trustmtime

Determines if git-gui(1) should trust the file modification timestamp or not. By default the

timestamps are not trusted.

gui.spellingDictionary

Specifies the dictionary used for spell checking commit messages in the git-gui(1). When set to

"none" spell checking is turned off.

gui.fastCopyBlame

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

If true, git gui blame uses -C instead of -C -C for original location detection. It makes blame

significantly faster on huge repositories at the expense of less thorough copy detection.

gui.copyBlameThreshold

Specifies the threshold to use in git gui blame original location detection, measured in

alphanumeric characters. See the git-blame(1) manual for more information on copy detection.

gui.blamehistoryctx

Specifies the radius of history context in days to show in gitk(1) for the selected commit, when the

Show History Context menu item is invoked from git gui blame. If this variable is set to zero, the

whole history is shown.

guitool.<name>.cmd

Specifies the shell command line to execute when the corresponding item of the git-gui(1) Tools
menu is invoked. This option is mandatory for every tool. The command is executed from the root

of the working directory, and in the environment it receives the name of the tool as

GIT_GUITOOL, the name of the currently selected file as FILENAME, and the name of the

current branch as CUR_BRANCH (if the head is detached, CUR_BRANCH is empty).

guitool.<name>.needsFile

Run the tool only if a diff is selected in the GUI. It guarantees that FILENAME is not empty.

guitool.<name>.noConsole

Run the command silently, without creating a window to display its output.

guitool.<name>.noRescan

Don’t rescan the working directory for changes after the tool finishes execution.

guitool.<name>.confirm

Show a confirmation dialog before actually running the tool.

guitool.<name>.argPrompt

Request a string argument from the user, and pass it to the tool through the ARGS environment

variable. Since requesting an argument implies confirmation, the confirm option has no effect if

this is enabled. If the option is set to true, yes, or 1, the dialog uses a built-in generic prompt;

otherwise the exact value of the variable is used.

guitool.<name>.revPrompt

Request a single valid revision from the user, and set the REVISION environment variable. In

other aspects this option is similar to argPrompt, and can be used together with it.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

guitool.<name>.revUnmerged

Show only unmerged branches in the revPrompt subdialog. This is useful for tools similar to

merge or rebase, but not for things like checkout or reset.

guitool.<name>.title

Specifies the title to use for the prompt dialog. The default is the tool name.

guitool.<name>.prompt

Specifies the general prompt string to display at the top of the dialog, before subsections for

argPrompt and revPrompt. The default value includes the actual command.

help.browser

Specify the browser that will be used to display help in the web format. See git-help(1).

help.format

Override the default help format used by git-help(1). Values man, info, web and html are

supported. man is the default. web and html are the same.

help.autoCorrect

If git detects typos and can identify exactly one valid command similar to the error, git will try to

suggest the correct command or even run the suggestion automatically. Possible config values are:

+o

(default): show the suggested command.

+o

number: run the suggested command after specified deciseconds (0.1 sec).

+o

run the suggested command immediately.

+o

show the suggestion and prompt for confirmation to run the command.

+o

don’t run or show any suggested command.

help.htmlPath

Specify the path where the HTML documentation resides. File system paths and URLs are

supported. HTML pages will be prefixed with this path when help is displayed in the web format.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

This defaults to the documentation path of your Git

installation.

http.proxy

Override the HTTP proxy, normally configured using the http_proxy, https_proxy, and all_proxy

environment variables (see curl(1)). In addition to the syntax understood by curl, it is possible to

specify a proxy string with a user name but no password, in which case git will attempt to acquire

one in the same way it does for other credentials. See gitcredentials(7) for more information. The

syntax thus is [protocol://][user[:password]@]proxyhost[:port]. This can be overridden on a

per-remote basis; see remote.<name>.proxy

http.proxyAuthMethod

Set the method with which to authenticate against the HTTP proxy. This only takes effect if the

configured proxy string contains a user name part (i.e. is of the form user@host or

user@host:port). This can be overridden on a per-remote basis; see

remote.<name>.proxyAuthMethod. Both can be overridden by the

GIT_HTTP_PROXY_AUTHMETHOD environment variable. Possible values are:

+o

- Automatically pick a suitable authentication method. It is assumed that the proxy answers an

unauthenticated request with a 407 status code and one or more Proxy-authenticate headers with

supported authentication methods. This is the default.

+o

- HTTP Basic authentication

+o

- HTTP Digest authentication; this prevents the password from being transmitted to the proxy in

clear text

+o

- GSS-Negotiate authentication (compare the --negotiate option of curl(1))

+o

- NTLM authentication (compare the --ntlm option of curl(1))

http.proxySSLCert

The pathname of a file that stores a client certificate to use to authenticate with an HTTPS proxy.

Can be overridden by the GIT_PROXY_SSL_CERT environment variable.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

http.proxySSLKey

The pathname of a file that stores a private key to use to authenticate with an HTTPS proxy. Can

be overridden by the GIT_PROXY_SSL_KEY environment variable.

http.proxySSLCertPasswordProtected

Enable Git’s password prompt for the proxy SSL certificate. Otherwise OpenSSL will prompt the

user, possibly many times, if the certificate or private key is encrypted. Can be overridden by the

GIT_PROXY_SSL_CERT_PASSWORD_PROTECTED environment variable.

http.proxySSLCAInfo

Pathname to the file containing the certificate bundle that should be used to verify the proxy with

when using an HTTPS proxy. Can be overridden by the GIT_PROXY_SSL_CAINFO
environment variable.

http.emptyAuth

Attempt authentication without seeking a username or password. This can be used to attempt

GSS-Negotiate authentication without specifying a username in the URL, as libcurl normally

requires a username for authentication.

http.delegation

Control GSSAPI credential delegation. The delegation is disabled by default in libcurl since

version 7.21.7. Set parameter to tell the server what it is allowed to delegate when it comes to user

credentials. Used with GSS/kerberos. Possible values are:

+o

- Don’t allow any delegation.

+o

- Delegates if and only if the OK-AS-DELEGATE flag is set in the Kerberos service ticket, which is

a matter of realm policy.

+o

- Unconditionally allow the server to delegate.

http.extraHeader

Pass an additional HTTP header when communicating with a server. If more than one such entry

exists, all of them are added as extra headers. To allow overriding the settings inherited from the

system config, an empty value will reset the extra headers to the empty list.

http.cookieFile

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

The pathname of a file containing previously stored cookie lines, which should be used in the Git

http session, if they match the server. The file format of the file to read cookies from should be

plain HTTP headers or the Netscape/Mozilla cookie file format (see curl(1)). NOTE that the file

specified with http.cookieFile is used only as input unless http.saveCookies is set.

http.saveCookies

If set, store cookies received during requests to the file specified by http.cookieFile. Has no effect

if http.cookieFile is unset.

http.version

Use the specified HTTP protocol version when communicating with a server. If you want to force

the default. The available and default version depend on libcurl. Currently the possible values of

this option are:

+o

+o

http.curloptResolve

Hostname resolution information that will be used first by libcurl when sending HTTP requests.

This information should be in one of the following formats:

+o

+o

The first format redirects all requests to the given HOST:PORT to the provided ADDRESS(s).

The second format clears all previous config values for that HOST:PORT combination. To allow

easy overriding of all the settings inherited from the system config, an empty value will reset all

resolution information to the empty list.

http.sslVersion

The SSL version to use when negotiating an SSL connection, if you want to force the default. The

available and default version depend on whether libcurl was built against NSS or OpenSSL and

the particular configuration of the crypto library in use. Internally this sets the

CURLOPT_SSL_VERSION option; see the libcurl documentation for more details on the format

of this option and for the ssl version supported. Currently the possible values of this option are:

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

+o

+o

+o

+o

+o

Can be overridden by the GIT_SSL_VERSION environment variable. To force git to use libcurl’s

default ssl version and ignore any explicit http.sslversion option, set GIT_SSL_VERSION to the

empty string.

http.sslCipherList

A list of SSL ciphers to use when negotiating an SSL connection. The available ciphers depend on

whether libcurl was built against NSS or OpenSSL and the particular configuration of the crypto

library in use. Internally this sets the CURLOPT_SSL_CIPHER_LIST option; see the libcurl

documentation for more details on the format of this list.

Can be overridden by the GIT_SSL_CIPHER_LIST environment variable. To force git to use

libcurl’s default cipher list and ignore any explicit http.sslCipherList option, set

GIT_SSL_CIPHER_LIST to the empty string.

http.sslVerify

Whether to verify the SSL certificate when fetching or pushing over HTTPS. Defaults to true. Can

be overridden by the GIT_SSL_NO_VERIFY environment variable.

http.sslCert

File containing the SSL certificate when fetching or pushing over HTTPS. Can be overridden by

the GIT_SSL_CERT environment variable.

http.sslKey

File containing the SSL private key when fetching or pushing over HTTPS. Can be overridden by

the GIT_SSL_KEY environment variable.

http.sslCertPasswordProtected

Enable Git’s password prompt for the SSL certificate. Otherwise OpenSSL will prompt the user,

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

possibly many times, if the certificate or private key

is encrypted. Can be overridden by the

GIT_SSL_CERT_PASSWORD_PROTECTED
environment variable.

http.sslCAInfo

File containing the certificates to verify the peer with when fetching or pushing over HTTPS. Can

be overridden by the GIT_SSL_CAINFO environment variable.

http.sslCAPath

Path containing files with the CA certificates to verify the peer with when fetching or pushing

over HTTPS. Can be overridden by the GIT_SSL_CAPATH environment variable.

http.sslBackend

Name of the SSL backend to use (e.g. "openssl" or "schannel"). This option is ignored if cURL

lacks support for choosing the SSL backend at runtime.

http.schannelCheckRevoke

Used to enforce or disable certificate revocation checks in cURL when http.sslBackend is set to

"schannel". Defaults to true if unset. Only necessary to disable this if Git consistently errors and

the message is about checking the revocation status of a certificate. This option is ignored if cURL

lacks support for setting the relevant SSL option at runtime.

http.schannelUseSSLCAInfo

As of cURL v7.60.0, the Secure Channel backend can use the certificate bundle provided via

http.sslCAInfo, but that would override the Windows Certificate Store. Since this is not desirable

by default, Git will tell cURL not to use that bundle by default when the schannel backend was

configured via http.sslBackend, unless http.schannelUseSSLCAInfo overrides this behavior.

http.pinnedPubkey

Public key of the https service. It may either be the filename of a PEM or DER encoded public

key file or a string starting with sha256// followed by the base64 encoded sha256 hash of the

public key. See also libcurl CURLOPT_PINNEDPUBLICKEY. git will exit with an error if this

option is set but not supported by cURL.

http.sslTry

Attempt to use AUTH SSL/TLS and encrypted data transfers when connecting via regular FTP

protocol. This might be needed if the FTP server requires it for security reasons or you wish to

connect securely whenever remote FTP server supports it. Default is false since it might trigger

certificate verification errors on misconfigured servers.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

http.maxRequests

How many HTTP requests to launch in parallel. Can be overridden by the

GIT_HTTP_MAX_REQUESTS environment variable. Default is 5.

http.minSessions

The number of curl sessions (counted across slots) to be kept across requests. They will not be

ended with curl_easy_cleanup() until http_cleanup() is invoked. If USE_CURL_MULTI is not

defined, this value will be capped at 1. Defaults to 1.

http.postBuffer

Maximum size in bytes of the buffer used by smart HTTP transports when POSTing data to the

remote system. For requests larger than this buffer size, HTTP/1.1 and Transfer-Encoding:

chunked is used to avoid creating a massive pack file locally. Default is 1 MiB, which is sufficient

for most requests.

Note that raising this limit is only effective for disabling chunked transfer encoding and therefore

should be used only where the remote server or a proxy only supports HTTP/1.0 or is

noncompliant with the HTTP standard. Raising this is not, in general, an effective solution for

most push problems, but can increase memory consumption significantly since the entire buffer is

allocated even for small pushes.

http.lowSpeedLimit, http.lowSpeedTime

If the HTTP transfer speed, in bytes per second, is less than http.lowSpeedLimit for longer than

http.lowSpeedTime seconds, the transfer is aborted. Can be overridden by the

GIT_HTTP_LOW_SPEED_LIMIT and GIT_HTTP_LOW_SPEED_TIME environment

variables.

http.noEPSV

A boolean which disables using of EPSV ftp command by curl. This can helpful with some "poor"

ftp servers which don’t support EPSV mode. Can be overridden by the

GIT_CURL_FTP_NO_EPSV environment variable. Default is false (curl will use EPSV).

http.userAgent

The HTTP USER_AGENT string presented to an HTTP server. The default value represents the

version of the client Git such as git/1.7.1. This option allows you to override this value to a more

common value such as Mozilla/4.0. This may be necessary, for instance, if connecting through a

firewall that restricts HTTP connections to a set of common USER_AGENT strings (but not

including those like git/1.7.1). Can be overridden by the GIT_HTTP_USER_AGENT
environment variable.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

http.followRedirects

Whether git should follow HTTP redirects. If set to true, git will transparently follow any redirect

issued by a server it encounters. If set to false, git will treat all redirects as errors. If set to initial,
git will follow redirects only for the initial request to a remote, but not for subsequent follow-up

HTTP requests. Since git uses the redirected URL as the base for the follow-up requests, this is

generally sufficient. The default is initial.

http.<url>.*

Any of the http.* options above can be applied selectively to some URLs. For a config key to

match a URL, each element of the config key is compared to that of the URL, in the following

order:

1.

(e.g., https in https://example.com/). This field must match exactly between the config key and the

URL.

2.

name (e.g., example.com in https://example.com/). This field must match between the config key and

the URL. It is possible to specify a * as part of the host name to match all subdomains at this level.

https://*.example.com/ for example would match https://foo.example.com/, but not

https://foo.bar.example.com/.

3.

number (e.g., 8080 in http://example.com:8080/). This field must match exactly between the config

key and the URL. Omitted port numbers are automatically converted to the correct default for the

scheme before matching.

4.

(e.g., repo.git in https://example.com/repo.git). The path field of the config key must match the path

field of the URL either exactly or as a prefix of slash-delimited path elements. This means a config

key with path foo/ matches URL path foo/bar. A prefix can only match on a slash (/) boundary.

Longer matches take precedence (so a config key with path foo/bar is a better match to URL path

foo/bar than a config key with just path foo/).

5.

name (e.g., user in https://user@example.com/repo.git). If the config key has a user name it must

match the user name in the URL exactly. If the config key does not have a user name, that config key

will match a URL with any user name (including none), but at a lower precedence than a config key

with a user name.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

The list above is ordered by decreasing precedence; a URL

that matches a config key’s path is preferred to one that

matches its user name. For example, if the URL is

https://user@example.com/foo/bar a config key match of

https://example.com/foo will be preferred over a config key

match of https://user@example.com.

All URLs are normalized before attempting any matching

(the password part, if embedded in the URL, is always

ignored for matching purposes) so that equivalent URLs

that are simply spelled differently will match properly.

Environment variable settings always override any

matches. The URLs that are matched against are those

given directly to Git commands. This means any URLs

visited as a result of a redirection do not participate in

matching.

i18n.commitEncoding

Character encoding the commit messages are stored in; Git itself does not care per se, but this

information is necessary e.g. when importing commits from emails or in the gitk graphical history

browser (and possibly at other places in the future or in other porcelains). See e.g. git-mailinfo(1).

Defaults to utf-8.

i18n.logOutputEncoding

Character encoding the commit messages are converted to when running git log and friends.

imap.folder

The folder to drop the mails into, which is typically the Drafts folder. For example:

"INBOX.Drafts", "INBOX/Drafts" or "[Gmail]/Drafts". Required.

imap.tunnel

Command used to setup a tunnel to the IMAP server through which commands will be piped

instead of using a direct network connection to the server. Required when imap.host is not set.

imap.host

A URL identifying the server. Use an imap:// prefix for non-secure connections and an imaps://
prefix for secure connections. Ignored when imap.tunnel is set, but required otherwise.

imap.user

The username to use when logging in to the server.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

imap.pass

The password to use when logging in to the server.

imap.port

An integer port number to connect to on the server. Defaults to 143 for imap:// hosts and 993 for

imaps:// hosts. Ignored when imap.tunnel is set.

imap.sslverify

A boolean to enable/disable verification of the server certificate used by the SSL/TLS connection.

Default is true. Ignored when imap.tunnel is set.

imap.preformattedHTML

A boolean to enable/disable the use of html encoding when sending a patch. An html encoded

patch will be bracketed with <pre> and have a content type of text/html. Ironically, enabling this

option causes Thunderbird to send the patch as a plain/text, format=fixed email. Default is false.

imap.authMethod

Specify authenticate method for authentication with IMAP server. If Git was built with the

NO_CURL option, or if your curl version is older than 7.34.0, or if you’re running git-imap-send

with the --no-curl option, the only supported method is CRAM-MD5. If this is not set then git

imap-send uses the basic IMAP plaintext LOGIN command.

include.path, includeIf.<condition>.path

Special variables to include other configuration files. See the "CONFIGURATION FILE" section

in the main git-config(1) documentation, specifically the "Includes" and "Conditional Includes"

subsections.

index.recordEndOfIndexEntries

Specifies whether the index file should include an "End Of Index Entry" section. This reduces

index load time on multiprocessor machines but produces a message "ignoring EOIE extension"

when reading the index using Git versions before 2.20. Defaults to true if index.threads has been

explicitly enabled, false otherwise.

index.recordOffsetTable

Specifies whether the index file should include an "Index Entry Offset Table" section. This

reduces index load time on multiprocessor machines but produces a message "ignoring IEOT

extension" when reading the index using Git versions before 2.20. Defaults to true if index.threads

has been explicitly enabled, false otherwise.

index.sparse

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When enabled, write the index using sparse-directory entries. This has no effect unless

core.sparseCheckout and core.sparseCheckoutCone are both enabled. Defaults to false.

index.threads

Specifies the number of threads to spawn when loading the index. This is meant to reduce index

load time on multiprocessor machines. Specifying 0 or true will cause Git to auto-detect the

number of CPU’s and set the number of threads accordingly. Specifying 1 or false will disable

multithreading. Defaults to true.

index.version

Specify the version with which new index files should be initialized. This does not affect existing

repositories. If feature.manyFiles is enabled, then the default is 4.

index.skipHash

When enabled, do not compute the trailing hash for the index file. This accelerates Git commands

that manipulate the index, such as git add, git commit, or git status. Instead of storing the

checksum, write a trailing set of bytes with value zero, indicating that the computation was

skipped.

If you enable index.skipHash, then Git clients older than 2.13.0 will refuse to parse the index and

Git clients older than 2.40.0 will report an error during git fsck.

init.templateDir

Specify the directory from which templates will be copied. (See the "TEMPLATE DIRECTORY"

section of git-init(1).)

init.defaultBranch

Allows overriding the default branch name e.g. when initializing a new repository.

instaweb.browser

Specify the program that will be used to browse your working repository in gitweb. See git-
instaweb(1).

instaweb.httpd

The HTTP daemon command-line to start gitweb on your working repository. See git-instaweb(1).

instaweb.local

If true the web server started by git-instaweb(1) will be bound to the local IP (127.0.0.1).

instaweb.modulePath

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

The default module path for git-instaweb(1) to use instead of /usr/lib/apache2/modules. Only used

if httpd is Apache.

instaweb.port

The port number to bind the gitweb httpd to. See git-instaweb(1).

interactive.singleKey

In interactive commands, allow the user to provide one-letter input with a single key (i.e., without

hitting enter). Currently this is used by the --patch mode of git-add(1), git-checkout(1), git-
restore(1), git-commit(1), git-reset(1), and git-stash(1). Note that this setting is silently ignored if

portable keystroke input is not available; requires the Perl module Term::ReadKey.

interactive.diffFilter

When an interactive command (such as git add --patch) shows a colorized diff, git will pipe the

diff through the shell command defined by this configuration variable. The command may mark

up the diff further for human consumption, provided that it retains a one-to-one correspondence

with the lines in the original diff. Defaults to disabled (no filtering).

log.abbrevCommit

If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume --abbrev-commit. You may

override this option with --no-abbrev-commit.

log.date

Set the default date-time mode for the log command. Setting a value for log.date is similar to

using git log’s --date option. See git-log(1) for details.

If the format is set to "auto:foo" and the pager is in use, format "foo" will be the used for the date

format. Otherwise "default" will be used.

log.decorate

Print out the ref names of any commits that are shown by the log command. If short is specified,

the ref name prefixes refs/heads/, refs/tags/ and refs/remotes/ will not be printed. If full is

specified, the full ref name (including prefix) will be printed. If auto is specified, then if the output

is going to a terminal, the ref names are shown as if short were given, otherwise no ref names are

shown. This is the same as the --decorate option of the git log.

log.initialDecorationSet

By default, git log only shows decorations for certain known ref namespaces. If all is specified,

then show all refs as decorations.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

log.excludeDecoration

Exclude the specified patterns from the log decorations. This is similar to the

--decorate-refs-exclude command-line option, but the config option can be overridden by the

--decorate-refs option.

log.diffMerges

Set diff format to be used when --diff-merges=on is specified, see --diff-merges in git-log(1) for

details. Defaults to separate.

log.follow

If true, git log will act as if the --follow option was used when a single <path> is given. This has

the same limitations as --follow, i.e. it cannot be used to follow multiple files and does not work

well on non-linear history.

log.graphColors

A list of colors, separated by commas, that can be used to draw history lines in git log --graph.

log.showRoot

If true, the initial commit will be shown as a big creation event. This is equivalent to a diff against

an empty tree. Tools like git-log(1) or git-whatchanged(1), which normally hide the root commit

will now show it. True by default.

log.showSignature

If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume --show-signature.

log.mailmap

If true, makes git-log(1), git-show(1), and git-whatchanged(1) assume --use-mailmap, otherwise

assume --no-use-mailmap. True by default.

lsrefs.unborn

May be "advertise" (the default), "allow", or "ignore". If "advertise", the server will respond to the

client sending "unborn" (as described in gitprotocol-v2(5)) and will advertise support for this

feature during the protocol v2 capability advertisement. "allow" is the same as "advertise" except

that the server will not advertise support for this feature; this is useful for load-balanced servers

that cannot be updated atomically (for example), since the administrator could configure "allow",

then after a delay, configure "advertise".

mailinfo.scissors

If true, makes git-mailinfo(1) (and therefore git-am(1)) act by default as if the --scissors option

was provided on the command-line. When active, this features removes everything from the

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

message body before a scissors line (i.e. consisting mainly of ">8", "8<" and "-").

mailmap.file

The location of an augmenting mailmap file. The default mailmap, located in the root of the

repository, is loaded first, then the mailmap file pointed to by this variable. The location of the

mailmap file may be in a repository subdirectory, or somewhere outside of the repository itself.

See git-shortlog(1) and git-blame(1).

mailmap.blob

Like mailmap.file, but consider the value as a reference to a blob in the repository. If both

mailmap.file and mailmap.blob are given, both are parsed, with entries from mailmap.file taking

precedence. In a bare repository, this defaults to HEAD:.mailmap. In a non-bare repository, it

defaults to empty.

maintenance.auto

This boolean config option controls whether some commands run git maintenance run --auto after

doing their normal work. Defaults to true.

maintenance.strategy

This string config option provides a way to specify one of a few recommended schedules for

background maintenance. This only affects which tasks are run during git maintenance run
--schedule=X commands, provided no --task=<task> arguments are provided. Further, if a

maintenance.<task>.schedule config value is set, then that value is used instead of the one

provided by maintenance.strategy. The possible strategy strings are:

+o

This default setting implies no task are run at any schedule.

+o

This setting optimizes for performing small maintenance activities that do not delete any data. This

does not schedule the gc task, but runs the prefetch and commit-graph tasks hourly, the loose-objects
and incremental-repack tasks daily, and the pack-refs task weekly.

maintenance.<task>.enabled

This boolean config option controls whether the maintenance task with name <task> is run when

no --task option is specified to git maintenance run. These config values are ignored if a --task
option exists. By default, only maintenance.gc.enabled is true.

maintenance.<task>.schedule

This config option controls whether or not the given <task> runs during a git maintenance run

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

--schedule=<frequency> command. The value must be one of "hourly", "daily", or

"weekly".

maintenance.commit-graph.auto

This integer config option controls how often the commit-graph task should be run as part of git
maintenance run --auto. If zero, then the commit-graph task will not run with the --auto option. A

negative value will force the task to run every time. Otherwise, a positive value implies the

command should run when the number of reachable commits that are not in the commit-graph file

is at least the value of maintenance.commit-graph.auto. The default value is 100.

maintenance.loose-objects.auto

This integer config option controls how often the loose-objects task should be run as part of git
maintenance run --auto. If zero, then the loose-objects task will not run with the --auto option. A

negative value will force the task to run every time. Otherwise, a positive value implies the

command should run when the number of loose objects is at least the value of

maintenance.loose-objects.auto. The default value is 100.

maintenance.incremental-repack.auto

This integer config option controls how often the incremental-repack task should be run as part of

git maintenance run --auto. If zero, then the incremental-repack task will not run with the --auto
option. A negative value will force the task to run every time. Otherwise, a positive value implies

the command should run when the number of pack-files not in the multi-pack-index is at least the

value of maintenance.incremental-repack.auto. The default value is 10.

man.viewer

Specify the programs that may be used to display help in the man format. See git-help(1).

man.<tool>.cmd

Specify the command to invoke the specified man viewer. The specified command is evaluated in

shell with the man page passed as argument. (See git-help(1).)

man.<tool>.path

Override the path for the given tool that may be used to display help in the man format. See git-
help(1).

merge.conflictStyle

Specify the style in which conflicted hunks are written out to working tree files upon merge. The

default is "merge", which shows a <<<<<<< conflict marker, changes made by one side, a

======= marker, changes made by the other side, and then a >>>>>>> marker. An alternate

style, "diff3", adds a ||||||| marker and the original text before the ======= marker. The "merge"

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

style tends to produce smaller conflict regions than diff3, both because of the exclusion of the

original text, and because when a subset of lines match on the two sides they are just pulled out of

the conflict region. Another alternate style, "zdiff3", is similar to diff3 but removes matching lines

on the two sides from the conflict region when those matching lines appear near either the

beginning or end of a conflict region.

merge.defaultToUpstream

If merge is called without any commit argument, merge the upstream branches configured for the

current branch by using their last observed values stored in their remote-tracking branches. The

values of the branch.<current branch>.merge that name the branches at the remote named by

branch.<current branch>.remote are consulted, and then they are mapped via

remote.<remote>.fetch to their corresponding remote-tracking branches, and the tips of these

tracking branches are merged. Defaults to true.

merge.ff

By default, Git does not create an extra merge commit when merging a commit that is a

descendant of the current commit. Instead, the tip of the current branch is fast-forwarded. When

set to false, this variable tells Git to create an extra merge commit in such a case (equivalent to

giving the --no-ff option from the command line). When set to only, only such fast-forward

merges are allowed (equivalent to giving the --ff-only option from the command line).

merge.verifySignatures

If true, this is equivalent to the --verify-signatures command line option. See git-merge(1) for

details.

merge.branchdesc

In addition to branch names, populate the log message with the branch description text associated

with them. Defaults to false.

merge.log

In addition to branch names, populate the log message with at most the specified number of

one-line descriptions from the actual commits that are being merged. Defaults to false, and true is

a synonym for 20.

merge.suppressDest

By adding a glob that matches the names of integration branches to this multi-valued

configuration variable, the default merge message computed for merges into these integration

branches will omit "into <branch name>" from its title.

An element with an empty value can be used to clear the list of globs accumulated from previous

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

configuration entries. When there is no merge.suppressDest variable defined, the default value of

master is used for backward compatibility.

merge.renameLimit

The number of files to consider in the exhaustive portion of rename detection during a merge. If

not specified, defaults to the value of diff.renameLimit. If neither merge.renameLimit nor

diff.renameLimit are specified, currently defaults to 7000. This setting has no effect if rename

detection is turned off.

merge.renames

Whether Git detects renames. If set to "false", rename detection is disabled. If set to "true", basic

rename detection is enabled. Defaults to the value of diff.renames.

merge.directoryRenames

Whether Git detects directory renames, affecting what happens at merge time to new files added

to a directory on one side of history when that directory was renamed on the other side of history.

If merge.directoryRenames is set to "false", directory rename detection is disabled, meaning that

such new files will be left behind in the old directory. If set to "true", directory rename detection is

enabled, meaning that such new files will be moved into the new directory. If set to "conflict", a

conflict will be reported for such paths. If merge.renames is false, merge.directoryRenames is

ignored and treated as false. Defaults to "conflict".

merge.renormalize

Tell Git that canonical representation of files in the repository has changed over time (e.g. earlier

commits record text files with CRLF line endings, but recent ones use LF line endings). In such a

repository, Git can convert the data recorded in commits to a canonical form before performing a

merge to reduce unnecessary conflicts. For more information, see section "Merging branches with

differing checkin/checkout attributes" in gitattributes(5).

merge.stat

Whether to print the diffstat between ORIG_HEAD and the merge result at the end of the merge.

True by default.

merge.autoStash

When set to true, automatically create a temporary stash entry before the operation begins, and

apply it after the operation ends. This means that you can run merge on a dirty worktree.

However, use with care: the final stash application after a successful merge might result in

non-trivial conflicts. This option can be overridden by the --no-autostash and --autostash options

of git-merge(1). Defaults to false.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

merge.tool

Controls which merge tool is used by git-mergetool(1). The list below shows the valid built-in

values. Any other value is treated as a custom merge tool and requires that a corresponding

mergetool.<tool>.cmd variable is defined.

merge.guitool

Controls which merge tool is used by git-mergetool(1) when the -g/--gui flag is specified. The list

below shows the valid built-in values. Any other value is treated as a custom merge tool and

requires that a corresponding mergetool.<guitool>.cmd variable is defined.

araxis
Use Araxis Merge (requires a graphical session)

bc
Use Beyond Compare (requires a graphical session)

bc3
Use Beyond Compare (requires a graphical session)

bc4
Use Beyond Compare (requires a graphical session)

codecompare
Use Code Compare (requires a graphical session)

deltawalker
Use DeltaWalker (requires a graphical session)

diffmerge
Use DiffMerge (requires a graphical session)

diffuse
Use Diffuse (requires a graphical session)

ecmerge
Use ECMerge (requires a graphical session)

emerge
Use Emacs’ Emerge

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

examdiff
Use ExamDiff Pro (requires a graphical session)

guiffy
Use Guiffy’s Diff Tool (requires a graphical session)

gvimdiff
Use gVim (requires a graphical session) with a custom layout (see git help mergetool’s
BACKEND SPECIFIC HINTS section)

gvimdiff1
Use gVim (requires a graphical session) with a 2 panes layout (LOCAL and REMOTE)

gvimdiff2
Use gVim (requires a graphical session) with a 3 panes layout (LOCAL, MERGED and

REMOTE)

gvimdiff3
Use gVim (requires a graphical session) where only the MERGED file is shown

kdiff3
Use KDiff3 (requires a graphical session)

meld
Use Meld (requires a graphical session) with optional auto merge (see git help mergetool’s
CONFIGURATION section)

nvimdiff
Use Neovim with a custom layout (see git help mergetool’s BACKEND SPECIFIC HINTS
section)

nvimdiff1
Use Neovim with a 2 panes layout (LOCAL and REMOTE)

nvimdiff2
Use Neovim with a 3 panes layout (LOCAL, MERGED and REMOTE)

nvimdiff3
Use Neovim where only the MERGED file is shown

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

opendiff
Use FileMerge (requires a graphical session)

p4merge
Use HelixCore P4Merge (requires a graphical session)

smerge
Use Sublime Merge (requires a graphical session)

tkdiff
Use TkDiff (requires a graphical session)

tortoisemerge
Use TortoiseMerge (requires a graphical session)

vimdiff
Use Vim with a custom layout (see git help mergetool’s BACKEND SPECIFIC HINTS
section)

vimdiff1
Use Vim with a 2 panes layout (LOCAL and REMOTE)

vimdiff2
Use Vim with a 3 panes layout (LOCAL, MERGED and REMOTE)

vimdiff3
Use Vim where only the MERGED file is shown

winmerge
Use WinMerge (requires a graphical session)

xxdiff
Use xxdiff (requires a graphical session)

merge.verbosity

Controls the amount of output shown by the recursive merge strategy. Level 0 outputs nothing

except a final error message if conflicts were detected. Level 1 outputs only conflicts, 2 outputs

conflicts and file changes. Level 5 and above outputs debugging information. The default is level

2. Can be overridden by the GIT_MERGE_VERBOSITY environment variable.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

merge.<driver>.name

Defines a human-readable name for a custom low-level merge driver. See gitattributes(5) for

details.

merge.<driver>.driver

Defines the command that implements a custom low-level merge driver. See gitattributes(5) for

details.

merge.<driver>.recursive

Names a low-level merge driver to be used when performing an internal merge between common

ancestors. See gitattributes(5) for details.

mergetool.<tool>.path

Override the path for the given tool. This is useful in case your tool is not in the PATH.

mergetool.<tool>.cmd

Specify the command to invoke the specified merge tool. The specified command is evaluated in

shell with the following variables available: BASE is the name of a temporary file containing the

common base of the files to be merged, if available; LOCAL is the name of a temporary file

containing the contents of the file on the current branch; REMOTE is the name of a temporary file

containing the contents of the file from the branch being merged; MERGED contains the name of

the file to which the merge tool should write the results of a successful merge.

mergetool.<tool>.hideResolved

Allows the user to override the global mergetool.hideResolved value for a specific tool. See

mergetool.hideResolved for the full description.

mergetool.<tool>.trustExitCode

For a custom merge command, specify whether the exit code of the merge command can be used

to determine whether the merge was successful. If this is not set to true then the merge target file

timestamp is checked and the merge assumed to have been successful if the file has been updated,

otherwise the user is prompted to indicate the success of the merge.

mergetool.meld.hasOutput

Older versions of meld do not support the --output option. Git will attempt to detect whether meld
supports --output by inspecting the output of meld --help. Configuring mergetool.meld.hasOutput
will make Git skip these checks and use the configured value instead. Setting

mergetool.meld.hasOutput to true tells Git to unconditionally use the --output option, and false
avoids using --output.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

mergetool.meld.useAutoMerge

When the --auto-merge is given, meld will merge all non-conflicting parts automatically, highlight

the conflicting parts and wait for user decision. Setting mergetool.meld.useAutoMerge to true tells

Git to unconditionally use the --auto-merge option with meld. Setting this value to auto makes git

detect whether --auto-merge is supported and will only use --auto-merge when available. A value

of false avoids using --auto-merge altogether, and is the default value.

mergetool.vimdiff.layout

The vimdiff backend uses this variable to control how its split windows look like. Applies even if

you are using Neovim (nvim) or gVim (gvim) as the merge tool. See BACKEND SPECIFIC

HINTS section in git-mergetool(1). for details.

mergetool.hideResolved

During a merge Git will automatically resolve as many conflicts as possible and write the

MERGED file containing conflict markers around any conflicts that it cannot resolve; LOCAL

and REMOTE normally represent the versions of the file from before Git’s conflict resolution.

This flag causes LOCAL and REMOTE to be overwritten so that only the unresolved conflicts are

presented to the merge tool. Can be configured per-tool via the mergetool.<tool>.hideResolved
configuration variable. Defaults to false.

mergetool.keepBackup

After performing a merge, the original file with conflict markers can be saved as a file with a .orig
extension. If this variable is set to false then this file is not preserved. Defaults to true (i.e. keep

the backup files).

mergetool.keepTemporaries

When invoking a custom merge tool, Git uses a set of temporary files to pass to the tool. If the

tool returns an error and this variable is set to true, then these temporary files will be preserved,

otherwise they will be removed after the tool has exited. Defaults to false.

mergetool.writeToTemp

Git writes temporary BASE, LOCAL, and REMOTE versions of conflicting files in the worktree

by default. Git will attempt to use a temporary directory for these files when set true. Defaults to

false.

mergetool.prompt

Prompt before each invocation of the merge resolution program.

mergetool.guiDefault

Set true to use the merge.guitool by default (equivalent to specifying the --gui argument), or auto

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

to select merge.guitool or merge.tool depending on the presence of a DISPLAY environment

variable value. The default is false, where the --gui argument must be provided explicitly for the

merge.guitool to be used.

notes.mergeStrategy

Which merge strategy to choose by default when resolving notes conflicts. Must be one of

manual, ours, theirs, union, or cat_sort_uniq. Defaults to manual. See "NOTES MERGE

STRATEGIES" section of git-notes(1) for more information on each strategy.

This setting can be overridden by passing the --strategy option to git-notes(1).

notes.<name>.mergeStrategy

Which merge strategy to choose when doing a notes merge into refs/notes/<name>. This overrides

the more general "notes.mergeStrategy". See the "NOTES MERGE STRATEGIES" section in git-
notes(1) for more information on the available strategies.

notes.displayRef

Which ref (or refs, if a glob or specified more than once), in addition to the default set by

core.notesRef or GIT_NOTES_REF, to read notes from when showing commit messages with the

git log family of commands.

This setting can be overridden with the GIT_NOTES_DISPLAY_REF environment variable,

which must be a colon separated list of refs or globs.

A warning will be issued for refs that do not exist, but a glob that does not match any refs is

silently ignored.

This setting can be disabled by the --no-notes option to the git log family of commands, or by the

--notes=<ref> option accepted by those commands.

The effective value of "core.notesRef" (possibly overridden by GIT_NOTES_REF) is also

implicitly added to the list of refs to be displayed.

notes.rewrite.<command>

When rewriting commits with <command> (currently amend or rebase), if this variable is false,

git will not copy notes from the original to the rewritten commit. Defaults to true. See also

"notes.rewriteRef" below.

This setting can be overridden with the GIT_NOTES_REWRITE_REF environment variable,

which must be a colon separated list of refs or globs.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

notes.rewriteMode

When copying notes during a rewrite (see the "notes.rewrite.<command>" option), determines

what to do if the target commit already has a note. Must be one of overwrite, concatenate,

cat_sort_uniq, or ignore. Defaults to concatenate.

This setting can be overridden with the GIT_NOTES_REWRITE_MODE environment variable.

notes.rewriteRef

When copying notes during a rewrite, specifies the (fully qualified) ref whose notes should be

copied. May be a glob, in which case notes in all matching refs will be copied. You may also

specify this configuration several times.

Does not have a default value; you must configure this variable to enable note rewriting. Set it to

refs/notes/commits to enable rewriting for the default commit notes.

Can be overridden with the GIT_NOTES_REWRITE_REF environment variable. See

notes.rewrite.<command> above for a further description of its format.

pack.window

The size of the window used by git-pack-objects(1) when no window size is given on the

command line. Defaults to 10.

pack.depth

The maximum delta depth used by git-pack-objects(1) when no maximum depth is given on the

command line. Defaults to 50. Maximum value is 4095.

pack.windowMemory

The maximum size of memory that is consumed by each thread in git-pack-objects(1) for pack

window memory when no limit is given on the command line. The value can be suffixed with "k",

"m", or "g". When left unconfigured (or set explicitly to 0), there will be no limit.

pack.compression

An integer -1..9, indicating the compression level for objects in a pack file. -1 is the zlib default. 0

means no compression, and 1..9 are various speed/size tradeoffs, 9 being slowest. If not set,

defaults to core.compression. If that is not set, defaults to -1, the zlib default, which is "a default

compromise between speed and compression (currently equivalent to level 6)."

Note that changing the compression level will not automatically recompress all existing objects.

You can force recompression by passing the -F option to git-repack(1).

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

pack.allowPackReuse

When true, and when reachability bitmaps are enabled, pack-objects will try to send parts of the

bitmapped packfile verbatim. This can reduce memory and CPU usage to serve fetches, but might

result in sending a slightly larger pack. Defaults to true.

pack.island

An extended regular expression configuring a set of delta islands. See "DELTA ISLANDS" in git-
pack-objects(1) for details.

pack.islandCore

Specify an island name which gets to have its objects be packed first. This creates a kind of

pseudo-pack at the front of one pack, so that the objects from the specified island are hopefully

faster to copy into any pack that should be served to a user requesting these objects. In practice

this means that the island specified should likely correspond to what is the most commonly cloned

in the repo. See also "DELTA ISLANDS" in git-pack-objects(1).

pack.deltaCacheSize

The maximum memory in bytes used for caching deltas in git-pack-objects(1) before writing them

out to a pack. This cache is used to speed up the writing object phase by not having to recompute

the final delta result once the best match for all objects is found. Repacking large repositories on

machines which are tight with memory might be badly impacted by this though, especially if this

cache pushes the system into swapping. A value of 0 means no limit. The smallest size of 1 byte

may be used to virtually disable this cache. Defaults to 256 MiB.

pack.deltaCacheLimit

The maximum size of a delta, that is cached in git-pack-objects(1). This cache is used to speed up

the writing object phase by not having to recompute the final delta result once the best match for

all objects is found. Defaults to 1000. Maximum value is 65535.

pack.threads

Specifies the number of threads to spawn when searching for best delta matches. This requires that

git-pack-objects(1) be compiled with pthreads otherwise this option is ignored with a warning.

This is meant to reduce packing time on multiprocessor machines. The required amount of

memory for the delta search window is however multiplied by the number of threads. Specifying 0

will cause Git to auto-detect the number of CPU’s and set the number of threads accordingly.

pack.indexVersion

Specify the default pack index version. Valid values are 1 for legacy pack index used by Git

versions prior to 1.5.2, and 2 for the new pack index with capabilities for packs larger than 4 GB

as well as proper protection against the repacking of corrupted packs. Version 2 is the default.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Note that version 2 is enforced and this config option ignored whenever the corresponding pack is

larger than 2 GB.

If you have an old Git that does not understand the version 2 *.idx file, cloning or fetching over a

non native protocol (e.g. "http") that will copy both *.pack file and corresponding *.idx file from

the other side may give you a repository that cannot be accessed with your older version of Git. If

the *.pack file is smaller than 2 GB, however, you can use git-index-pack(1) on the *.pack file to

regenerate the *.idx file.

pack.packSizeLimit

The maximum size of a pack. This setting only affects packing to a file when repacking, i.e. the

git:// protocol is unaffected. It can be overridden by the --max-pack-size option of git-repack(1).

Reaching this limit results in the creation of multiple packfiles.

Note that this option is rarely useful, and may result in a larger total on-disk size (because Git will

not store deltas between packs), as well as worse runtime performance (object lookup within

multiple packs is slower than a single pack, and optimizations like reachability bitmaps cannot

cope with multiple packs).

If you need to actively run Git using smaller packfiles (e.g., because your filesystem does not

support large files), this option may help. But if your goal is to transmit a packfile over a medium

that supports limited sizes (e.g., removable media that cannot store the whole repository), you are

likely better off creating a single large packfile and splitting it using a generic multi-volume

archive tool (e.g., Unix split).

The minimum size allowed is limited to 1 MiB. The default is unlimited. Common unit suffixes of

k, m, or g are supported.

pack.useBitmaps

When true, git will use pack bitmaps (if available) when packing to stdout (e.g., during the server

side of a fetch). Defaults to true. You should not generally need to turn this off unless you are

debugging pack bitmaps.

pack.useBitmapBoundaryTraversal

When true, Git will use an experimental algorithm for computing reachability queries with

bitmaps. Instead of building up complete bitmaps for all of the negated tips and then OR-ing them

together, consider negated tips with existing bitmaps as additive (i.e. OR-ing them into the result

if they exist, ignoring them otherwise), and build up a bitmap at the boundary instead.

When using this algorithm, Git may include too many objects as a result of not opening up trees

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

belonging to certain UNINTERESTING commits. This inexactness matches the non-bitmap

traversal algorithm.

In many cases, this can provide a speed-up over the exact algorithm, particularly when there is

poor bitmap coverage of the negated side of the query.

pack.useSparse

When true, git will default to using the --sparse option in git pack-objects when the --revs option

is present. This algorithm only walks trees that appear in paths that introduce new objects. This

can have significant performance benefits when computing a pack to send a small change.

However, it is possible that extra objects are added to the pack-file if the included commits

contain certain types of direct renames. Default is true.

pack.preferBitmapTips

When selecting which commits will receive bitmaps, prefer a commit at the tip of any reference

that is a suffix of any value of this configuration over any other commits in the "selection

window".

Note that setting this configuration to refs/foo does not mean that the commits at the tips of

refs/foo/bar and refs/foo/baz will necessarily be selected. This is because commits are selected for

bitmaps from within a series of windows of variable length.

If a commit at the tip of any reference which is a suffix of any value of this configuration is seen

in a window, it is immediately given preference over any other commit in that window.

pack.writeBitmaps (deprecated)

This is a deprecated synonym for repack.writeBitmaps.

pack.writeBitmapHashCache

When true, git will include a "hash cache" section in the bitmap index (if one is written). This

cache can be used to feed git’s delta heuristics, potentially leading to better deltas between

bitmapped and non-bitmapped objects (e.g., when serving a fetch between an older, bitmapped

pack and objects that have been pushed since the last gc). The downside is that it consumes 4

bytes per object of disk space. Defaults to true.

When writing a multi-pack reachability bitmap, no new namehashes are computed; instead, any

namehashes stored in an existing bitmap are permuted into their appropriate location when writing

a new bitmap.

pack.writeBitmapLookupTable

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When true, Git will include a "lookup table" section in the bitmap index (if one is written). This

table is used to defer loading individual bitmaps as late as possible. This can be beneficial in

repositories that have relatively large bitmap indexes. Defaults to false.

pack.readReverseIndex

When true, git will read any .rev file(s) that may be available (see: gitformat-pack(5)). When false,

the reverse index will be generated from scratch and stored in memory. Defaults to true.

pack.writeReverseIndex

When true, git will write a corresponding .rev file (see: gitformat-pack(5)) for each new packfile

that it writes in all places except for git-fast-import(1) and in the bulk checkin mechanism.

Defaults to true.

pager.<cmd>

If the value is boolean, turns on or off pagination of the output of a particular Git subcommand

when writing to a tty. Otherwise, turns on pagination for the subcommand using the pager

specified by the value of pager.<cmd>. If --paginate or --no-pager is specified on the command

line, it takes precedence over this option. To disable pagination for all commands, set core.pager
or GIT_PAGER to cat.

pretty.<name>

Alias for a --pretty= format string, as specified in git-log(1). Any aliases defined here can be used

just as the built-in pretty formats could. For example, running git config pretty.changelog
"format:* %H %s" would cause the invocation git log --pretty=changelog to be equivalent to

running git log "--pretty=format:* %H %s". Note that an alias with the same name as a built-in

format will be silently ignored.

protocol.allow

If set, provide a user defined default policy for all protocols which don’t explicitly have a policy

(protocol.<name>.allow). By default, if unset, known-safe protocols (http, https, git, ssh) have a

default policy of always, known-dangerous protocols (ext) have a default policy of never, and all

other protocols (including file) have a default policy of user. Supported policies:

+o

- protocol is always able to be used.

+o

- protocol is never able to be used.

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

- protocol is only able to be used when GIT_PROTOCOL_FROM_USER is

either unset or has a value of 1. This policy should be used when you want a

protocol to be directly usable by the user but don’t want it used by commands

which execute clone/fetch/push commands without user input, e.g. recursive

submodule initialization.

protocol.<name>.allow

Set a policy to be used by protocol <name> with clone/fetch/push commands. See protocol.allow
above for the available policies.

The protocol names currently used by git are:

+o

any local file-based path (including file:// URLs, or local paths)

+o

the anonymous git protocol over a direct TCP connection (or proxy, if configured)

+o

git over ssh (including host:path syntax, ssh://, etc).

+o

git over http, both "smart http" and "dumb http". Note that this does not include https; if you want to

configure both, you must do so individually.

+o

external helpers are named by their protocol (e.g., use hg to allow the git-remote-hg helper)

protocol.version

If set, clients will attempt to communicate with a server using the specified protocol version. If the

server does not support it, communication falls back to version 0. If unset, the default is 2.

Supported versions:

+o

- the original wire protocol.

+o

- the original wire protocol with the addition of a version string in the initial response from the

server.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

- Wire protocol version 2, see gitprotocol-v2(5).

pull.ff

By default, Git does not create an extra merge commit when merging a commit that is a

descendant of the current commit. Instead, the tip of the current branch is fast-forwarded. When

set to false, this variable tells Git to create an extra merge commit in such a case (equivalent to

giving the --no-ff option from the command line). When set to only, only such fast-forward

merges are allowed (equivalent to giving the --ff-only option from the command line). This setting

overrides merge.ff when pulling.

pull.rebase

When true, rebase branches on top of the fetched branch, instead of merging the default branch

from the default remote when "git pull" is run. See "branch.<name>.rebase" for setting this on a

per-branch basis.

When merges (or just m), pass the --rebase-merges option to git rebase so that the local merge

commits are included in the rebase (see git-rebase(1) for details).

When the value is interactive (or just i), the rebase is run in interactive mode.

NOTE: this is a possibly dangerous operation; do not use it unless you understand the implications

(see git-rebase(1) for details).

pull.octopus

The default merge strategy to use when pulling multiple branches at once.

pull.twohead

The default merge strategy to use when pulling a single branch.

push.autoSetupRemote

If set to "true" assume --set-upstream on default push when no upstream tracking exists for the

current branch; this option takes effect with push.default options simple, upstream, and current. It

is useful if by default you want new branches to be pushed to the default remote (like the behavior

of push.default=current) and you also want the upstream tracking to be set. Workflows most likely

to benefit from this option are simple central workflows where all branches are expected to have

the same name on the remote.

push.default

Defines the action git push should take if no refspec is given (whether from the command-line,

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

config, or elsewhere). Different values are well-suited for specific workflows; for instance,

in a purely central workflow (i.e. the fetch source is equal to the push destination),

upstream is probably what you want. Possible values are:

+o

- do not push anything (error out) unless a refspec is given. This is primarily meant for people who

want to avoid mistakes by always being explicit.

+o

- push the current branch to update a branch with the same name on the receiving end. Works in both

central and non-central workflows.

+o

- push the current branch back to the branch whose changes are usually integrated into the current

branch (which is called @{upstream}). This mode only makes sense if you are pushing to the same

repository you would normally pull from (i.e. central workflow).

+o

- This is a deprecated synonym for upstream.

+o

- pushes the current branch with the same name on the remote.

If you are working on a centralized workflow (pushing to the same repository you pull from, which

is typically origin), then you need to configure an upstream branch with the same name.

This mode is the default since Git 2.0, and is the safest option suited for beginners.

+o

- push all branches having the same name on both ends. This makes the repository you are pushing to

remember the set of branches that will be pushed out (e.g. if you always push maint and master there

and no other branches, the repository you push to will have these two branches, and your local maint

and master will be pushed there).

To use this mode effectively, you have to make sure all the branches you would push out are ready to

be pushed out before running git push, as the whole point of this mode is to allow you to push all of

the branches in one go. If you usually finish work on only one branch and push out the result, while

other branches are unfinished, this mode is not for you. Also this mode is not suitable for pushing

into a shared central repository, as other people may add new branches there, or update the tip of

existing branches outside your control.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

This used to be the default, but not since Git 2.0

(simple is the new default).

push.followTags

If set to true enable --follow-tags option by default. You may override this configuration at time of

push by specifying --no-follow-tags.

push.gpgSign

May be set to a boolean value, or the string if-asked. A true value causes all pushes to be GPG

signed, as if --signed is passed to git-push(1). The string if-asked causes pushes to be signed if the

server supports it, as if --signed=if-asked is passed to git push. A false value may override a value

from a lower-priority config file. An explicit command-line flag always overrides this config

option.

push.pushOption

When no --push-option=<option> argument is given from the command line, git push behaves as

if each <value> of this variable is given as --push-option=<value>.

This is a multi-valued variable, and an empty value can be used in a higher priority configuration

file (e.g. .git/config in a repository) to clear the values inherited from a lower priority

configuration files (e.g. $HOME/.gitconfig).

Example:

/etc/gitconfig

push.pushoption = a

push.pushoption = b

~/.gitconfig

push.pushoption = c

repo/.git/config

push.pushoption =

push.pushoption = b

This will result in only b (a and c are cleared).

push.recurseSubmodules

May be "check", "on-demand", "only", or "no", with the same behavior as that of "push

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

--recurse-submodules". If not set, no is used by default, unless submodule.recurse is set (in which

case a true value means on-demand).

push.useForceIfIncludes

If set to "true", it is equivalent to specifying --force-if-includes as an option to git-push(1) in the

command line. Adding --no-force-if-includes at the time of push overrides this configuration

setting.

push.negotiate

If set to "true", attempt to reduce the size of the packfile sent by rounds of negotiation in which the

client and the server attempt to find commits in common. If "false", Git will rely solely on the

server’s ref advertisement to find commits in common.

push.useBitmaps

If set to "false", disable use of bitmaps for "git push" even if pack.useBitmaps is "true", without

preventing other git operations from using bitmaps. Default is true.

rebase.backend

Default backend to use for rebasing. Possible choices are apply or merge. In the future, if the

merge backend gains all remaining capabilities of the apply backend, this setting may become

unused.

rebase.stat

Whether to show a diffstat of what changed upstream since the last rebase. False by default.

rebase.autoSquash

If set to true enable --autosquash option by default.

rebase.autoStash

When set to true, automatically create a temporary stash entry before the operation begins, and

apply it after the operation ends. This means that you can run rebase on a dirty worktree.

However, use with care: the final stash application after a successful rebase might result in

non-trivial conflicts. This option can be overridden by the --no-autostash and --autostash options

of git-rebase(1). Defaults to false.

rebase.updateRefs

If set to true enable --update-refs option by default.

rebase.missingCommitsCheck

If set to "warn", git rebase -i will print a warning if some commits are removed (e.g. a line was

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

deleted), however the rebase will still proceed. If set to "error", it will print the previous warning

and stop the rebase, git rebase --edit-todo can then be used to correct the error. If set to "ignore",

no checking is done. To drop a commit without warning or error, use the drop command in the

todo list. Defaults to "ignore".

rebase.instructionFormat

A format string, as specified in git-log(1), to be used for the todo list during an interactive rebase.

The format will automatically have the long commit hash prepended to the format.

rebase.abbreviateCommands

If set to true, git rebase will use abbreviated command names in the todo list resulting in

something like this:

p deadbee The oneline of the commit

p fa1afe1 The oneline of the next commit

...

instead of:

pick deadbee The oneline of the commit

pick fa1afe1 The oneline of the next commit

...

Defaults to false.

rebase.rescheduleFailedExec

Automatically reschedule exec commands that failed. This only makes sense in interactive mode

(or when an --exec option was provided). This is the same as specifying the

--reschedule-failed-exec option.

rebase.forkPoint

If set to false set --no-fork-point option by default.

rebase.rebaseMerges

Whether and how to set the --rebase-merges option by default. Can be rebase-cousins,

no-rebase-cousins, or a boolean. Setting to true or to no-rebase-cousins is equivalent to

--rebase-merges=no-rebase-cousins, setting to rebase-cousins is equivalent to

--rebase-merges=rebase-cousins, and setting to false is equivalent to --no-rebase-merges. Passing

--rebase-merges on the command line, with or without an argument, overrides any

rebase.rebaseMerges configuration.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

receive.advertiseAtomic

By default, git-receive-pack will advertise the atomic push capability to its clients. If you don’t

want to advertise this capability, set this variable to false.

receive.advertisePushOptions

When set to true, git-receive-pack will advertise the push options capability to its clients. False by

default.

receive.autogc

By default, git-receive-pack will run "git-gc --auto" after receiving data from git-push and

updating refs. You can stop it by setting this variable to false.

receive.certNonceSeed

By setting this variable to a string, git receive-pack will accept a git push --signed and verifies it

by using a "nonce" protected by HMAC using this string as a secret key.

receive.certNonceSlop

When a git push --signed sent a push certificate with a "nonce" that was issued by a receive-pack

serving the same repository within this many seconds, export the "nonce" found in the certificate

to GIT_PUSH_CERT_NONCE to the hooks (instead of what the receive-pack asked the sending

side to include). This may allow writing checks in pre-receive and post-receive a bit easier.

Instead of checking GIT_PUSH_CERT_NONCE_SLOP environment variable that records by

how many seconds the nonce is stale to decide if they want to accept the certificate, they only can

check GIT_PUSH_CERT_NONCE_STATUS is OK.

receive.fsckObjects

If it is set to true, git-receive-pack will check all received objects. See transfer.fsckObjects for

what’s checked. Defaults to false. If not set, the value of transfer.fsckObjects is used instead.

receive.fsck.<msg-id>

Acts like fsck.<msg-id>, but is used by git-receive-pack(1) instead of git-fsck(1). See the

fsck.<msg-id> documentation for details.

receive.fsck.skipList

Acts like fsck.skipList, but is used by git-receive-pack(1) instead of git-fsck(1). See the

fsck.skipList documentation for details.

receive.keepAlive

After receiving the pack from the client, receive-pack may produce no output (if --quiet was

specified) while processing the pack, causing some networks to drop the TCP connection. With

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

this option set, if receive-pack does not transmit any data in this phase for receive.keepAlive
seconds, it will send a short keepalive packet. The default is 5 seconds; set to 0 to disable

keepalives entirely.

receive.unpackLimit

If the number of objects received in a push is below this limit then the objects will be unpacked

into loose object files. However if the number of received objects equals or exceeds this limit then

the received pack will be stored as a pack, after adding any missing delta bases. Storing the pack

from a push can make the push operation complete faster, especially on slow filesystems. If not

set, the value of transfer.unpackLimit is used instead.

receive.maxInputSize

If the size of the incoming pack stream is larger than this limit, then git-receive-pack will error

out, instead of accepting the pack file. If not set or set to 0, then the size is unlimited.

receive.denyDeletes

If set to true, git-receive-pack will deny a ref update that deletes the ref. Use this to prevent such a

ref deletion via a push.

receive.denyDeleteCurrent

If set to true, git-receive-pack will deny a ref update that deletes the currently checked out branch

of a non-bare repository.

receive.denyCurrentBranch

If set to true or "refuse", git-receive-pack will deny a ref update to the currently checked out

branch of a non-bare repository. Such a push is potentially dangerous because it brings the HEAD

out of sync with the index and working tree. If set to "warn", print a warning of such a push to

stderr, but allow the push to proceed. If set to false or "ignore", allow such pushes with no

message. Defaults to "refuse".

Another option is "updateInstead" which will update the working tree if pushing into the current

branch. This option is intended for synchronizing working directories when one side is not easily

accessible via interactive ssh (e.g. a live web site, hence the requirement that the working

directory be clean). This mode also comes in handy when developing inside a VM to test and fix

code on different Operating Systems.

By default, "updateInstead" will refuse the push if the working tree or the index have any

difference from the HEAD, but the push-to-checkout hook can be used to customize this. See

githooks(5).

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

receive.denyNonFastForwards

If set to true, git-receive-pack will deny a ref update which is not a fast-forward. Use this to

prevent such an update via a push, even if that push is forced. This configuration variable is set

when initializing a shared repository.

receive.hideRefs

This variable is the same as transfer.hideRefs, but applies only to receive-pack (and so affects

pushes, but not fetches). An attempt to update or delete a hidden ref by git push is rejected.

receive.procReceiveRefs

This is a multi-valued variable that defines reference prefixes to match the commands in

receive-pack. Commands matching the prefixes will be executed by an external hook

"proc-receive", instead of the internal execute_commands function. If this variable is not defined,

the "proc-receive" hook will never be used, and all commands will be executed by the internal

execute_commands function.

For example, if this variable is set to "refs/for", pushing to reference such as "refs/for/master" will

not create or update a reference named "refs/for/master", but may create or update a pull request

directly by running the hook "proc-receive".

Optional modifiers can be provided in the beginning of the value to filter commands for specific

actions: create (a), modify (m), delete (d). A ! can be included in the modifiers to negate the

reference prefix entry. E.g.:

git config --system --add receive.procReceiveRefs ad:refs/heads

git config --system --add receive.procReceiveRefs !:refs/heads

receive.updateServerInfo

If set to true, git-receive-pack will run git-update-server-info after receiving data from git-push

and updating refs.

receive.shallowUpdate

If set to true, .git/shallow can be updated when new refs require new shallow roots. Otherwise

those refs are rejected.

remote.pushDefault

The remote to push to by default. Overrides branch.<name>.remote for all branches, and is

overridden by branch.<name>.pushRemote for specific branches.

remote.<name>.url

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

The URL of a remote repository. See git-fetch(1) or git-push(1).

remote.<name>.pushurl

The push URL of a remote repository. See git-push(1).

remote.<name>.proxy

For remotes that require curl (http, https and ftp), the URL to the proxy to use for that remote. Set

to the empty string to disable proxying for that remote.

remote.<name>.proxyAuthMethod

For remotes that require curl (http, https and ftp), the method to use for authenticating against the

proxy in use (probably set in remote.<name>.proxy). See http.proxyAuthMethod.

remote.<name>.fetch

The default set of "refspec" for git-fetch(1). See git-fetch(1).

remote.<name>.push

The default set of "refspec" for git-push(1). See git-push(1).

remote.<name>.mirror

If true, pushing to this remote will automatically behave as if the --mirror option was given on the

command line.

remote.<name>.skipDefaultUpdate

If true, this remote will be skipped by default when updating using git-fetch(1) or the update
subcommand of git-remote(1).

remote.<name>.skipFetchAll

If true, this remote will be skipped by default when updating using git-fetch(1) or the update
subcommand of git-remote(1).

remote.<name>.receivepack

The default program to execute on the remote side when pushing. See option --receive-pack of git-
push(1).

remote.<name>.uploadpack

The default program to execute on the remote side when fetching. See option --upload-pack of git-
fetch-pack(1).

remote.<name>.tagOpt

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Setting this value to --no-tags disables automatic tag following when fetching from remote

<name>. Setting it to --tags will fetch every tag from remote <name>, even if they are not

reachable from remote branch heads. Passing these flags directly to git-fetch(1) can override this

setting. See options --tags and --no-tags of git-fetch(1).

remote.<name>.vcs

Setting this to a value <vcs> will cause Git to interact with the remote with the git-remote-<vcs>

helper.

remote.<name>.prune

When set to true, fetching from this remote by default will also remove any remote-tracking

references that no longer exist on the remote (as if the --prune option was given on the command

line). Overrides fetch.prune settings, if any.

remote.<name>.pruneTags

When set to true, fetching from this remote by default will also remove any local tags that no

longer exist on the remote if pruning is activated in general via remote.<name>.prune, fetch.prune
or --prune. Overrides fetch.pruneTags settings, if any.

See also remote.<name>.prune and the PRUNING section of git-fetch(1).

remote.<name>.promisor

When set to true, this remote will be used to fetch promisor objects.

remote.<name>.partialclonefilter

The filter that will be applied when fetching from this promisor remote. Changing or clearing this

value will only affect fetches for new commits. To fetch associated objects for commits already

present in the local object database, use the --refetch option of git-fetch(1).

remotes.<group>

The list of remotes which are fetched by "git remote update <group>". See git-remote(1).

repack.useDeltaBaseOffset

By default, git-repack(1) creates packs that use delta-base offset. If you need to share your

repository with Git older than version 1.4.4, either directly or via a dumb protocol such as http,

then you need to set this option to "false" and repack. Access from old Git versions over the native

protocol are unaffected by this option.

repack.packKeptObjects

If set to true, makes git repack act as if --pack-kept-objects was passed. See git-repack(1) for

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

details. Defaults to false normally, but true if a bitmap index is being written (either via

--write-bitmap-index or repack.writeBitmaps).

repack.useDeltaIslands

If set to true, makes git repack act as if --delta-islands was passed. Defaults to false.

repack.writeBitmaps

When true, git will write a bitmap index when packing all objects to disk (e.g., when git repack -a
is run). This index can speed up the "counting objects" phase of subsequent packs created for

clones and fetches, at the cost of some disk space and extra time spent on the initial repack. This

has no effect if multiple packfiles are created. Defaults to true on bare repos, false otherwise.

repack.updateServerInfo

If set to false, git-repack(1) will not run git-update-server-info(1). Defaults to true. Can be

overridden when true by the -n option of git-repack(1).

repack.cruftWindow, repack.cruftWindowMemory, repack.cruftDepth, repack.cruftThreads

Parameters used by git-pack-objects(1) when generating a cruft pack and the respective

parameters are not given over the command line. See similarly named pack.* configuration

variables for defaults and meaning.

rerere.autoUpdate

When set to true, git-rerere updates the index with the resulting contents after it cleanly resolves

conflicts using previously recorded resolution. Defaults to false.

rerere.enabled

Activate recording of resolved conflicts, so that identical conflict hunks can be resolved

automatically, should they be encountered again. By default, git-rerere(1) is enabled if there is an

rr-cache directory under the $GIT_DIR, e.g. if "rerere" was previously used in the repository.

revert.reference

Setting this variable to true makes git revert behave as if the --reference option is given.

safe.bareRepository

Specifies which bare repositories Git will work with. The currently supported values are:

+o

Git works with all bare repositories. This is the default.

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Git only works with bare repositories specified via the top-level --git-dir
command-line option, or the GIT_DIR environment variable (see git(1)).

If you do not use bare repositories in your workflow, then it may be beneficial to set

safe.bareRepository to explicit in your global config. This will protect you from

attacks that involve cloning a repository that contains a bare repository and running a

Git command within that directory.

This config setting is only respected in protected configuration (see the section called

"SCOPES"). This prevents the untrusted repository from tampering with this value.

safe.directory

These config entries specify Git-tracked directories that are considered safe even if they are owned

by someone other than the current user. By default, Git will refuse to even parse a Git config of a

repository owned by someone else, let alone run its hooks, and this config setting allows users to

specify exceptions, e.g. for intentionally shared repositories (see the --shared option in git-init(1)).

This is a multi-valued setting, i.e. you can add more than one directory via git config --add. To

reset the list of safe directories (e.g. to override any such directories specified in the system

config), add a safe.directory entry with an empty value.

This config setting is only respected in protected configuration (see the section called "SCOPES").

This prevents the untrusted repository from tampering with this value.

The value of this setting is interpolated, i.e. ~/<path> expands to a path relative to the home

directory and %(prefix)/<path> expands to a path relative to Git’s (runtime) prefix.

To completely opt-out of this security check, set safe.directory to the string *. This will allow all

repositories to be treated as if their directory was listed in the safe.directory list. If

safe.directory=* is set in system config and you want to re-enable this protection, then initialize

your list with an empty value before listing the repositories that you deem safe.

As explained, Git only allows you to access repositories owned by yourself, i.e. the user who is

running Git, by default. When Git is running as root in a non Windows platform that provides

sudo, however, git checks the SUDO_UID environment variable that sudo creates and will allow

access to the uid recorded as its value in addition to the id from root. This is to make it easy to

perform a common sequence during installation "make && sudo make install". A git process

running under sudo runs as root but the sudo command exports the environment variable to record

which id the original user has. If that is not what you would prefer and want git to only trust

repositories that are owned by root instead, then you can remove the SUDO_UID variable from

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

root’s environment before invoking git.

sendemail.identity

A configuration identity. When given, causes values in the sendemail.<identity> subsection to

take precedence over values in the sendemail section. The default identity is the value of

sendemail.identity.

sendemail.smtpEncryption

See git-send-email(1) for description. Note that this setting is not subject to the identity

mechanism.

sendemail.smtpsslcertpath

Path to ca-certificates (either a directory or a single file). Set it to an empty string to disable

certificate verification.

sendemail.<identity>.*

Identity-specific versions of the sendemail.* parameters found below, taking precedence over

those when this identity is selected, through either the command-line or sendemail.identity.

sendemail.multiEdit

If true (default), a single editor instance will be spawned to edit files you have to edit (patches

when --annotate is used, and the summary when --compose is used). If false, files will be edited

one after the other, spawning a new editor each time.

sendemail.confirm

Sets the default for whether to confirm before sending. Must be one of always, never, cc,

compose, or auto. See --confirm in the git-send-email(1) documentation for the meaning of these

values.

sendemail.aliasesFile

To avoid typing long email addresses, point this to one or more email aliases files. You must also

supply sendemail.aliasFileType.

sendemail.aliasFileType

Format of the file(s) specified in sendemail.aliasesFile. Must be one of mutt, mailrc, pine, elm, or

gnus, or sendmail.

What an alias file in each format looks like can be found in the documentation of the email

program of the same name. The differences and limitations from the standard formats are

described below:

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

sendmail

+o

aliases and quoted addresses are not supported: lines that contain a " symbol are ignored.

+o

to a file (/path/name) or pipe (|command) is not supported.

+o

inclusion (:include: /path/name) is not supported.

+o

are printed on the standard error output for any explicitly unsupported constructs, and any other

lines that are not recognized by the parser.

sendemail.annotate, sendemail.bcc, sendemail.cc, sendemail.ccCmd, sendemail.chainReplyTo,

sendemail.envelopeSender, sendemail.from, sendemail.headerCmd, sendemail.signedoffbycc,

sendemail.smtpPass, sendemail.suppresscc, sendemail.suppressFrom, sendemail.to, sendemail.tocmd,

sendemail.smtpDomain, sendemail.smtpServer, sendemail.smtpServerPort,

sendemail.smtpServerOption, sendemail.smtpUser, sendemail.thread, sendemail.transferEncoding,

sendemail.validate, sendemail.xmailer

These configuration variables all provide a default for git-send-email(1) command-line options.

See its documentation for details.

sendemail.signedoffcc (deprecated)

Deprecated alias for sendemail.signedoffbycc.

sendemail.smtpBatchSize

Number of messages to be sent per connection, after that a relogin will happen. If the value is 0 or

undefined, send all messages in one connection. See also the --batch-size option of git-send-
email(1).

sendemail.smtpReloginDelay

Seconds wait before reconnecting to smtp server. See also the --relogin-delay option of git-send-
email(1).

sendemail.forbidSendmailVariables

To avoid common misconfiguration mistakes, git-send-email(1) will abort with a warning if any

configuration options for "sendmail" exist. Set this variable to bypass the check.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

sequence.editor

Text editor used by git rebase -i for editing the rebase instruction file. The value is meant to be

interpreted by the shell when it is used. It can be overridden by the GIT_SEQUENCE_EDITOR
environment variable. When not configured the default commit message editor is used instead.

showBranch.default

The default set of branches for git-show-branch(1). See git-show-branch(1).

sparse.expectFilesOutsideOfPatterns

Typically with sparse checkouts, files not matching any sparsity patterns are marked with a

SKIP_WORKTREE bit in the index and are missing from the working tree. Accordingly, Git will

ordinarily check whether files with the SKIP_WORKTREE bit are in fact present in the working

tree contrary to expectations. If Git finds any, it marks those paths as present by clearing the

relevant SKIP_WORKTREE bits. This option can be used to tell Git that such

present-despite-skipped files are expected and to stop checking for them.

The default is false, which allows Git to automatically recover from the list of files in the index

and working tree falling out of sync.

Set this to true if you are in a setup where some external factor relieves Git of the responsibility

for maintaining the consistency between the presence of working tree files and sparsity patterns.

For example, if you have a Git-aware virtual file system that has a robust mechanism for keeping

the working tree and the sparsity patterns up to date based on access patterns.

Regardless of this setting, Git does not check for present-despite-skipped files unless sparse

checkout is enabled, so this config option has no effect unless core.sparseCheckout is true.

splitIndex.maxPercentChange

When the split index feature is used, this specifies the percent of entries the split index can contain

compared to the total number of entries in both the split index and the shared index before a new

shared index is written. The value should be between 0 and 100. If the value is 0 then a new

shared index is always written, if it is 100 a new shared index is never written. By default the

value is 20, so a new shared index is written if the number of entries in the split index would be

greater than 20 percent of the total number of entries. See git-update-index(1).

splitIndex.sharedIndexExpire

When the split index feature is used, shared index files that were not modified since the time this

variable specifies will be removed when a new shared index file is created. The value "now"

expires all entries immediately, and "never" suppresses expiration altogether. The default value is

"2.weeks.ago". Note that a shared index file is considered modified (for the purpose of expiration)

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

each time a new split-index file is either created based on it or read from it. See git-update-
index(1).

ssh.variant

By default, Git determines the command line arguments to use based on the basename of the

configured SSH command (configured using the environment variable GIT_SSH or

GIT_SSH_COMMAND or the config setting core.sshCommand). If the basename is

unrecognized, Git will attempt to detect support of OpenSSH options by first invoking the

configured SSH command with the -G (print configuration) option and will subsequently use

OpenSSH options (if that is successful) or no options besides the host and remote command (if it

fails).

The config variable ssh.variant can be set to override this detection. Valid values are ssh (to use

OpenSSH options), plink, putty, tortoiseplink, simple (no options except the host and remote

command). The default auto-detection can be explicitly requested using the value auto. Any other

value is treated as ssh. This setting can also be overridden via the environment variable

GIT_SSH_VARIANT.

The current command-line parameters used for each variant are as follows:

+o

- [-p port] [-4] [-6] [-o option] [username@]host command

+o

- [username@]host command

+o

or putty - [-P port] [-4] [-6] [username@]host command

+o

- [-P port] [-4] [-6] -batch [username@]host command

Except for the simple variant, command-line parameters are likely to change as git gains new

features.

status.relativePaths

By default, git-status(1) shows paths relative to the current directory. Setting this variable to false
shows paths relative to the repository root (this was the default for Git prior to v1.5.4).

status.short

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

Set to true to enable --short by default in git-status(1). The option --no-short takes precedence over

this variable.

status.branch

Set to true to enable --branch by default in git-status(1). The option --no-branch takes precedence

over this variable.

status.aheadBehind

Set to true to enable --ahead-behind and false to enable --no-ahead-behind by default in git-
status(1) for non-porcelain status formats. Defaults to true.

status.displayCommentPrefix

If set to true, git-status(1) will insert a comment prefix before each output line (starting with

core.commentChar, i.e. # by default). This was the behavior of git-status(1) in Git 1.8.4 and

previous. Defaults to false.

status.renameLimit

The number of files to consider when performing rename detection in git-status(1) and git-
commit(1). Defaults to the value of diff.renameLimit.

status.renames

Whether and how Git detects renames in git-status(1) and git-commit(1) . If set to "false", rename

detection is disabled. If set to "true", basic rename detection is enabled. If set to "copies" or

"copy", Git will detect copies, as well. Defaults to the value of diff.renames.

status.showStash

If set to true, git-status(1) will display the number of entries currently stashed away. Defaults to

false.

status.showUntrackedFiles

By default, git-status(1) and git-commit(1) show files which are not currently tracked by Git.

Directories which contain only untracked files, are shown with the directory name only. Showing

untracked files means that Git needs to lstat() all the files in the whole repository, which might be

slow on some systems. So, this variable controls how the commands displays the untracked files.

Possible values are:

+o

- Show no untracked files.

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

- Show untracked files and directories.

+o

- Show also individual files in untracked directories.

If this variable is not specified, it defaults to normal. This variable can be overridden with the

-u|--untracked-files option of git-status(1) and git-commit(1).

status.submoduleSummary

Defaults to false. If this is set to a non zero number or true (identical to -1 or an unlimited

number), the submodule summary will be enabled and a summary of commits for modified

submodules will be shown (see --summary-limit option of git-submodule(1)). Please note that the

summary output command will be suppressed for all submodules when diff.ignoreSubmodules is

set to all or only for those submodules where submodule.<name>.ignore=all. The only exception

to that rule is that status and commit will show staged submodule changes. To also view the

summary for ignored submodules you can either use the --ignore-submodules=dirty command-line

option or the git submodule summary command, which shows a similar output but does not honor

these settings.

stash.showIncludeUntracked

If this is set to true, the git stash show command will show the untracked files of a stash entry.

Defaults to false. See description of show command in git-stash(1).

stash.showPatch

If this is set to true, the git stash show command without an option will show the stash entry in

patch form. Defaults to false. See description of show command in git-stash(1).

stash.showStat

If this is set to true, the git stash show command without an option will show diffstat of the stash

entry. Defaults to true. See description of show command in git-stash(1).

submodule.<name>.url

The URL for a submodule. This variable is copied from the .gitmodules file to the git config via

git submodule init. The user can change the configured URL before obtaining the submodule via

git submodule update. If neither submodule.<name>.active or submodule.active are set, the

presence of this variable is used as a fallback to indicate whether the submodule is of interest to

git commands. See git-submodule(1) and gitmodules(5) for details.

submodule.<name>.update

The method by which a submodule is updated by git submodule update, which is the only affected

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

command, others such as git checkout --recurse-submodules are unaffected. It exists for

historical reasons, when git submodule was the only command to interact with

submodules; settings like submodule.active and pull.rebase are more specific. It is

populated by git submodule init from the gitmodules(5) file. See description of update

command in git-submodule(1).

submodule.<name>.branch

The remote branch name for a submodule, used by git submodule update --remote. Set this option

to override the value found in the .gitmodules file. See git-submodule(1) and gitmodules(5) for

details.

submodule.<name>.fetchRecurseSubmodules

This option can be used to control recursive fetching of this submodule. It can be overridden by

using the --[no-]recurse-submodules command-line option to "git fetch" and "git pull". This

setting will override that from in the gitmodules(5) file.

submodule.<name>.ignore

Defines under what circumstances "git status" and the diff family show a submodule as modified.

When set to "all", it will never be considered modified (but it will nonetheless show up in the

output of status and commit when it has been staged), "dirty" will ignore all changes to the

submodules work tree and takes only differences between the HEAD of the submodule and the

commit recorded in the superproject into account. "untracked" will additionally let submodules

with modified tracked files in their work tree show up. Using "none" (the default when this option

is not set) also shows submodules that have untracked files in their work tree as changed. This

setting overrides any setting made in .gitmodules for this submodule, both settings can be

overridden on the command line by using the "--ignore-submodules" option. The git submodule

commands are not affected by this setting.

submodule.<name>.active

Boolean value indicating if the submodule is of interest to git commands. This config option takes

precedence over the submodule.active config option. See gitsubmodules(7) for details.

submodule.active

A repeated field which contains a pathspec used to match against a submodule’s path to determine

if the submodule is of interest to git commands. See gitsubmodules(7) for details.

submodule.recurse

A boolean indicating if commands should enable the --recurse-submodules option by default.

Defaults to false.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

When set to true, it can be deactivated via the --no-recurse-submodules option. Note that some Git

commands lacking this option may call some of the above commands affected by

submodule.recurse; for instance git remote update will call git fetch but does not have a

--no-recurse-submodules option. For these commands a workaround is to temporarily change the

configuration value by using git -c submodule.recurse=0.

The following list shows the commands that accept --recurse-submodules and whether they are

supported by this setting.

+o

fetch, grep, pull, push, read-tree, reset, restore and switch are always supported.

+o

and ls-files are not supported.

+o

is supported only if submodule.propagateBranches is enabled

submodule.propagateBranches

[EXPERIMENTAL] A boolean that enables branching support when using --recurse-submodules
or submodule.recurse=true. Enabling this will allow certain commands to accept

--recurse-submodules and certain commands that already accept --recurse-submodules will now

consider branches. Defaults to false.

submodule.fetchJobs

Specifies how many submodules are fetched/cloned at the same time. A positive integer allows up

to that number of submodules fetched in parallel. A value of 0 will give some reasonable default.

If unset, it defaults to 1.

submodule.alternateLocation

Specifies how the submodules obtain alternates when submodules are cloned. Possible values are

no, superproject. By default no is assumed, which doesn’t add references. When the value is set to

superproject the submodule to be cloned computes its alternates location relative to the

superprojects alternate.

submodule.alternateErrorStrategy

Specifies how to treat errors with the alternates for a submodule as computed via

submodule.alternateLocation. Possible values are ignore, info, die. Default is die. Note that if set

to ignore or info, and if there is an error with the computed alternate, the clone proceeds as if no

alternate was specified.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

tag.forceSignAnnotated

A boolean to specify whether annotated tags created should be GPG signed. If --annotate is

specified on the command line, it takes precedence over this option.

tag.sort

This variable controls the sort ordering of tags when displayed by git-tag(1). Without the

"--sort=<value>" option provided, the value of this variable will be used as the default.

tag.gpgSign

A boolean to specify whether all tags should be GPG signed. Use of this option when running in

an automated script can result in a large number of tags being signed. It is therefore convenient to

use an agent to avoid typing your gpg passphrase several times. Note that this option doesn’t

affect tag signing behavior enabled by "-u <keyid>" or "--local-user=<keyid>" options.

tar.umask

This variable can be used to restrict the permission bits of tar archive entries. The default is 0002,

which turns off the world write bit. The special value "user" indicates that the archiving user’s

umask will be used instead. See umask(2) and git-archive(1).

Trace2 config settings are only read from the system and global config files; repository local and

worktree config files and -c command line arguments are not respected.

trace2.normalTarget

This variable controls the normal target destination. It may be overridden by the GIT_TRACE2
environment variable. The following table shows possible values.

trace2.perfTarget

This variable controls the performance target destination. It may be overridden by the

GIT_TRACE2_PERF environment variable. The following table shows possible values.

trace2.eventTarget

This variable controls the event target destination. It may be overridden by the

GIT_TRACE2_EVENT environment variable. The following table shows possible values.

+o

or false - Disables the target.

+o

or true - Writes to STDERR.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

+o

- Writes to the already opened file descriptor.

+o

- Writes to the file in append mode. If the target already exists and is a directory, the traces will be

written to files (one per process) underneath the given directory.

+o

- Write to a Unix DomainSocket (on platforms that support them). Socket type can be either stream
or dgram; if omitted Git will try both.

trace2.normalBrief

Boolean. When true time, filename, and line fields are omitted from normal output. May be

overridden by the GIT_TRACE2_BRIEF environment variable. Defaults to false.

trace2.perfBrief

Boolean. When true time, filename, and line fields are omitted from PERF output. May be

overridden by the GIT_TRACE2_PERF_BRIEF environment variable. Defaults to false.

trace2.eventBrief

Boolean. When true time, filename, and line fields are omitted from event output. May be

overridden by the GIT_TRACE2_EVENT_BRIEF environment variable. Defaults to false.

trace2.eventNesting

Integer. Specifies desired depth of nested regions in the event output. Regions deeper than this

value will be omitted. May be overridden by the GIT_TRACE2_EVENT_NESTING environment

variable. Defaults to 2.

trace2.configParams

A comma-separated list of patterns of "important" config settings that should be recorded in the

trace2 output. For example, core.*,remote.*.url would cause the trace2 output to contain events

listing each configured remote. May be overridden by the GIT_TRACE2_CONFIG_PARAMS
environment variable. Unset by default.

trace2.envVars

A comma-separated list of "important" environment variables that should be recorded in the trace2

output. For example, GIT_HTTP_USER_AGENT,GIT_CONFIG would cause the trace2 output

to contain events listing the overrides for HTTP user agent and the location of the Git

configuration file (assuming any are set). May be overridden by the GIT_TRACE2_ENV_VARS
environment variable. Unset by default.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

trace2.destinationDebug

Boolean. When true Git will print error messages when a trace target destination cannot be opened

for writing. By default, these errors are suppressed and tracing is silently disabled. May be

overridden by the GIT_TRACE2_DST_DEBUG environment variable.

trace2.maxFiles

Integer. When writing trace files to a target directory, do not write additional traces if we would

exceed this many files. Instead, write a sentinel file that will block further tracing to this directory.

Defaults to 0, which disables this check.

transfer.credentialsInUrl

A configured URL can contain plaintext credentials in the form

<protocol>://<user>:<password>@<domain>/<path>. You may want to warn or forbid the use of

such configuration (in favor of using git-credential(1)). This will be used on git-clone(1), git-
fetch(1), git-push(1), and any other direct use of the configured URL.

Note that this is currently limited to detecting credentials in remote.<name>.url configuration, it

won’t detect credentials in remote.<name>.pushurl configuration.

You might want to enable this to prevent inadvertent credentials exposure, e.g. because:

+o

OS or system where you’re running git may not provide a way or otherwise allow you to configure

the permissions of the configuration file where the username and/or password are stored.

+o

if it does, having such data stored "at rest" might expose you in other ways, e.g. a backup process

might copy the data to another system.

+o

git programs will pass the full URL to one another as arguments on the command-line, meaning the

credentials will be exposed to other users on OS’s or systems that allow other users to see the full

process list of other users. On linux the "hidepid" setting documented in procfs(5) allows for

configuring this behavior.

If such concerns don’t apply to you then you probably don’t need to be concerned about credentials

exposure due to storing that sensitive data in git’s configuration files. If you do want to use this, set

transfer.credentialsInUrl to one of these values:

+o

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

(default): Git will proceed with its activity without warning.

+o

Git will write a warning message to stderr when parsing a URL with a plaintext credential.

+o

Git will write a failure message to stderr when parsing a URL with a plaintext credential.

transfer.fsckObjects

When fetch.fsckObjects or receive.fsckObjects are not set, the value of this variable is used

instead. Defaults to false.

When set, the fetch or receive will abort in the case of a malformed object or a link to a

nonexistent object. In addition, various other issues are checked for, including legacy issues (see

fsck.<msg-id>), and potential security issues like the existence of a .GIT directory or a malicious

.gitmodules file (see the release notes for v2.2.1 and v2.17.1 for details). Other sanity and security

checks may be added in future releases.

On the receiving side, failing fsckObjects will make those objects unreachable, see

"QUARANTINE ENVIRONMENT" in git-receive-pack(1). On the fetch side, malformed objects

will instead be left unreferenced in the repository.

Due to the non-quarantine nature of the fetch.fsckObjects implementation it cannot be relied upon

to leave the object store clean like receive.fsckObjects can.

As objects are unpacked they’re written to the object store, so there can be cases where malicious

objects get introduced even though the "fetch" failed, only to have a subsequent "fetch" succeed

because only new incoming objects are checked, not those that have already been written to the

object store. That difference in behavior should not be relied upon. In the future, such objects may

be quarantined for "fetch" as well.

For now, the paranoid need to find some way to emulate the quarantine environment if they’d like

the same protection as "push". E.g. in the case of an internal mirror do the mirroring in two steps,

one to fetch the untrusted objects, and then do a second "push" (which will use the quarantine) to

another internal repo, and have internal clients consume this pushed-to repository, or embargo

internal fetches and only allow them once a full "fsck" has run (and no new fetches have happened

in the meantime).

transfer.hideRefs

String(s) receive-pack and upload-pack use to decide which refs to omit from their initial

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

advertisements. Use more than one definition to specify multiple prefix strings. A

ref that is under the hierarchies listed in the value of this variable is excluded, and

is hidden when responding to git push or git fetch. See receive.hideRefs and

uploadpack.hideRefs for program-specific versions of this config.

You may also include a ! in front of the ref name to negate the entry, explicitly

exposing it, even if an earlier entry marked it as hidden. If you have multiple

hideRefs values, later entries override earlier ones (and entries in more-specific

config files override less-specific ones).

If a namespace is in use, the namespace prefix is stripped from each reference

before it is matched against transfer.hiderefs patterns. In order to match refs before

stripping, add a ^ in front of the ref name. If you combine ! and ^, ! must be

specified first.

For example, if refs/heads/master is specified in transfer.hideRefs and the current

namespace is foo, then refs/namespaces/foo/refs/heads/master is omitted from the

advertisements. If uploadpack.allowRefInWant is set, upload-pack will treat

want-ref refs/heads/master in a protocol v2 fetch command as if

refs/namespaces/foo/refs/heads/master did not exist. receive-pack, on the other

hand, will still advertise the object id the ref is pointing to without mentioning its

name (a so-called ".have" line).

Even if you hide refs, a client may still be able to steal the target objects via the

techniques described in the "SECURITY" section of the gitnamespaces(7) man

page; it’s best to keep private data in a separate repository.

transfer.unpackLimit

When fetch.unpackLimit or receive.unpackLimit are not set, the value of this variable is used

instead. The default value is 100.

transfer.advertiseSID

Boolean. When true, client and server processes will advertise their unique session IDs to their

remote counterpart. Defaults to false.

transfer.bundleURI

When true, local git clone commands will request bundle information from the remote server (if

advertised) and download bundles before continuing the clone through the Git protocol. Defaults

to false.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

uploadarchive.allowUnreachable

If true, allow clients to use git archive --remote to request any tree, whether reachable from the ref

tips or not. See the discussion in the "SECURITY" section of git-upload-archive(1) for more

details. Defaults to false.

uploadpack.hideRefs

This variable is the same as transfer.hideRefs, but applies only to upload-pack (and so affects only

fetches, not pushes). An attempt to fetch a hidden ref by git fetch will fail. See also

uploadpack.allowTipSHA1InWant.

uploadpack.allowTipSHA1InWant

When uploadpack.hideRefs is in effect, allow upload-pack to accept a fetch request that asks for

an object at the tip of a hidden ref (by default, such a request is rejected). See also

uploadpack.hideRefs. Even if this is false, a client may be able to steal objects via the techniques

described in the "SECURITY" section of the gitnamespaces(7) man page; it’s best to keep private

data in a separate repository.

uploadpack.allowReachableSHA1InWant

Allow upload-pack to accept a fetch request that asks for an object that is reachable from any ref

tip. However, note that calculating object reachability is computationally expensive. Defaults to

false. Even if this is false, a client may be able to steal objects via the techniques described in the

"SECURITY" section of the gitnamespaces(7) man page; it’s best to keep private data in a

separate repository.

uploadpack.allowAnySHA1InWant

Allow upload-pack to accept a fetch request that asks for any object at all. Defaults to false.

uploadpack.keepAlive

When upload-pack has started pack-objects, there may be a quiet period while pack-objects
prepares the pack. Normally it would output progress information, but if --quiet was used for the

fetch, pack-objects will output nothing at all until the pack data begins. Some clients and networks

may consider the server to be hung and give up. Setting this option instructs upload-pack to send

an empty keepalive packet every uploadpack.keepAlive seconds. Setting this option to 0 disables

keepalive packets entirely. The default is 5 seconds.

uploadpack.packObjectsHook

If this option is set, when upload-pack would run git pack-objects to create a packfile for a client,

it will run this shell command instead. The pack-objects command and arguments it would have

run (including the git pack-objects at the beginning) are appended to the shell command. The stdin

and stdout of the hook are treated as if pack-objects itself was run. I.e., upload-pack will feed

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

input intended for pack-objects to the hook, and expects a completed packfile on stdout.

Note that this configuration variable is only respected when it is specified in protected

configuration (see the section called "SCOPES"). This is a safety measure against fetching from

untrusted repositories.

uploadpack.allowFilter

If this option is set, upload-pack will support partial clone and partial fetch object filtering.

uploadpackfilter.allow

Provides a default value for unspecified object filters (see: the below configuration variable). If set

to true, this will also enable all filters which get added in the future. Defaults to true.

uploadpackfilter.<filter>.allow

Explicitly allow or ban the object filter corresponding to <filter>, where <filter> may be one of:

blob:none, blob:limit, object:type, tree, sparse:oid, or combine. If using combined filters, both

combine and all of the nested filter kinds must be allowed. Defaults to uploadpackfilter.allow.

uploadpackfilter.tree.maxDepth

Only allow --filter=tree:<n> when <n> is no more than the value of

uploadpackfilter.tree.maxDepth. If set, this also implies uploadpackfilter.tree.allow=true, unless

this configuration variable had already been set. Has no effect if unset.

uploadpack.allowRefInWant

If this option is set, upload-pack will support the ref-in-want feature of the protocol version 2 fetch
command. This feature is intended for the benefit of load-balanced servers which may not have

the same view of what OIDs their refs point to due to replication delay.

url.<base>.insteadOf

Any URL that starts with this value will be rewritten to start, instead, with <base>. In cases where

some site serves a large number of repositories, and serves them with multiple access methods,

and some users need to use different access methods, this feature allows people to specify any of

the equivalent URLs and have Git automatically rewrite the URL to the best alternative for the

particular user, even for a never-before-seen repository on the site. When more than one insteadOf

strings match a given URL, the longest match is used.

Note that any protocol restrictions will be applied to the rewritten URL. If the rewrite changes the

URL to use a custom protocol or remote helper, you may need to adjust the protocol.*.allow
config to permit the request. In particular, protocols you expect to use for submodules must be set

to always rather than the default of user. See the description of protocol.allow above.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

url.<base>.pushInsteadOf

Any URL that starts with this value will not be pushed to; instead, it will be rewritten to start with

<base>, and the resulting URL will be pushed to. In cases where some site serves a large number

of repositories, and serves them with multiple access methods, some of which do not allow push,

this feature allows people to specify a pull-only URL and have Git automatically use an

appropriate URL to push, even for a never-before-seen repository on the site. When more than one

pushInsteadOf strings match a given URL, the longest match is used. If a remote has an explicit

pushurl, Git will ignore this setting for that remote.

user.name, user.email, author.name, author.email, committer.name, committer.email

The user.name and user.email variables determine what ends up in the author and committer field

of commit objects. If you need the author or committer to be different, the author.name,

author.email, committer.name or committer.email variables can be set. Also, all of these can be

overridden by the GIT_AUTHOR_NAME, GIT_AUTHOR_EMAIL,

GIT_COMMITTER_NAME, GIT_COMMITTER_EMAIL and EMAIL environment variables.

Note that the name forms of these variables conventionally refer to some form of a personal name.

See git-commit(1) and the environment variables section of git(1) for more information on these

settings and the credential.username option if you’re looking for authentication credentials

instead.

user.useConfigOnly

Instruct Git to avoid trying to guess defaults for user.email and user.name, and instead retrieve the

values only from the configuration. For example, if you have multiple email addresses and would

like to use a different one for each repository, then with this configuration option set to true in the

global config along with a name, Git will prompt you to set up an email before making new

commits in a newly cloned repository. Defaults to false.

user.signingKey

If git-tag(1) or git-commit(1) is not selecting the key you want it to automatically when creating a

signed tag or commit, you can override the default selection with this variable. This option is

passed unchanged to gpg’s --local-user parameter, so you may specify a key using any method

that gpg supports. If gpg.format is set to ssh this can contain the path to either your private ssh key

or the public key when ssh-agent is used. Alternatively it can contain a public key prefixed with

key:: directly (e.g.: "key::ssh-rsa XXXXXX identifier"). The private key needs to be available via

ssh-agent. If not set git will call gpg.ssh.defaultKeyCommand (e.g.: "ssh-add -L") and try to use

the first key available. For backward compatibility, a raw key which begins with "ssh-", such as

"ssh-rsa XXXXXX identifier", is treated as "key::ssh-rsa XXXXXX identifier", but this form is

deprecated; use the key:: form instead.

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

versionsort.prereleaseSuffix (deprecated)

Deprecated alias for versionsort.suffix. Ignored if versionsort.suffix is set.

versionsort.suffix

Even when version sort is used in git-tag(1), tagnames with the same base version but different

suffixes are still sorted lexicographically, resulting e.g. in prerelease tags appearing after the main

release (e.g. "1.0-rc1" after "1.0"). This variable can be specified to determine the sorting order of

tags with different suffixes.

By specifying a single suffix in this variable, any tagname containing that suffix will appear

before the corresponding main release. E.g. if the variable is set to "-rc", then all "1.0-rcX" tags

will appear before "1.0". If specified multiple times, once per suffix, then the order of suffixes in

the configuration will determine the sorting order of tagnames with those suffixes. E.g. if "-pre"

appears before "-rc" in the configuration, then all "1.0-preX" tags will be listed before any

"1.0-rcX" tags. The placement of the main release tag relative to tags with various suffixes can be

determined by specifying the empty suffix among those other suffixes. E.g. if the suffixes "-rc",

"", "-ck" and "-bfs" appear in the configuration in this order, then all "v4.8-rcX" tags are listed

first, followed by "v4.8", then "v4.8-ckX" and finally "v4.8-bfsX".

If more than one suffixes match the same tagname, then that tagname will be sorted according to

the suffix which starts at the earliest position in the tagname. If more than one different matching

suffixes start at that earliest position, then that tagname will be sorted according to the longest of

those suffixes. The sorting order between different suffixes is undefined if they are in multiple

config files.

web.browser

Specify a web browser that may be used by some commands. Currently only git-instaweb(1) and

git-help(1) may use it.

worktree.guessRemote

If no branch is specified and neither -b nor -B nor --detach is used, then git worktree add defaults

to creating a new branch from HEAD. If worktree.guessRemote is set to true, worktree add tries to

find a remote-tracking branch whose name uniquely matches the new branch name. If such a

branch exists, it is checked out and set as "upstream" for the new branch. If no such match can be

found, it falls back to creating a new branch from the current HEAD.

BUGS
When using the deprecated [section.subsection] syntax, changing a value will result in adding a

multi-line key instead of a change, if the subsection is given with at least one uppercase character. For

example when the config looks like

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

[section.subsection]

key = value1

and running git config section.Subsection.key value2 will result in

[section.subsection]

key = value1

key = value2

GIT
Part of the git(1) suite

NOTES
1. the bundle URI design document

git-htmldocs/technical/bundle-uri.html

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

Git 2.42.0 2023-08-21 GIT-CONFIG(1)

