
NAME
git-submodule - Initialize, update or inspect submodules

SYNOPSIS
git submodule [--quiet] [--cached]

git submodule [--quiet] add [<options>] [--] <repository> [<path>]

git submodule [--quiet] status [--cached] [--recursive] [--] [<path>...]

git submodule [--quiet] init [--] [<path>...]

git submodule [--quiet] deinit [-f|--force] (--all|[--] <path>...)

git submodule [--quiet] update [<options>] [--] [<path>...]

git submodule [--quiet] set-branch [<options>] [--] <path>

git submodule [--quiet] set-url [--] <path> <newurl>

git submodule [--quiet] summary [<options>] [--] [<path>...]

git submodule [--quiet] foreach [--recursive] <command>

git submodule [--quiet] sync [--recursive] [--] [<path>...]

git submodule [--quiet] absorbgitdirs [--] [<path>...]

DESCRIPTION
Inspects, updates and manages submodules.

For more information about submodules, see gitsubmodules(7).

COMMANDS
With no arguments, shows the status of existing submodules. Several subcommands are available to

perform operations on the submodules.

add [-b <branch>] [-f|--force] [--name <name>] [--reference <repository>] [--depth <depth>] [--]

<repository> [<path>]

Add the given repository as a submodule at the given path to the changeset to be committed next

to the current project: the current project is termed the "superproject".

<repository> is the URL of the new submodule’s origin repository. This may be either an absolute

URL, or (if it begins with ./ or ../), the location relative to the superproject’s default remote

repository (Please note that to specify a repository foo.git which is located right next to a

superproject bar.git, you’ll have to use ../foo.git instead of ./foo.git - as one might expect when

following the rules for relative URLs - because the evaluation of relative URLs in Git is identical

to that of relative directories).

The default remote is the remote of the remote-tracking branch of the current branch. If no such

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

remote-tracking branch exists or the HEAD is detached, "origin" is assumed to be the default

remote. If the superproject doesn’t have a default remote configured the superproject is its own

authoritative upstream and the current working directory is used instead.

The optional argument <path> is the relative location for the cloned submodule to exist in the

superproject. If <path> is not given, the canonical part of the source repository is used ("repo" for

"/path/to/repo.git" and "foo" for "host.xz:foo/.git"). If <path> exists and is already a valid Git

repository, then it is staged for commit without cloning. The <path> is also used as the

submodule’s logical name in its configuration entries unless --name is used to specify a logical

name.

The given URL is recorded into .gitmodules for use by subsequent users cloning the superproject.

If the URL is given relative to the superproject’s repository, the presumption is the superproject

and submodule repositories will be kept together in the same relative location, and only the

superproject’s URL needs to be provided. git-submodule will correctly locate the submodule using

the relative URL in .gitmodules.

status [--cached] [--recursive] [--] [<path>...]

Show the status of the submodules. This will print the SHA-1 of the currently checked out commit

for each submodule, along with the submodule path and the output of git describe for the SHA-1.

Each SHA-1 will possibly be prefixed with - if the submodule is not initialized, + if the currently

checked out submodule commit does not match the SHA-1 found in the index of the containing

repository and U if the submodule has merge conflicts.

If --cached is specified, this command will instead print the SHA-1 recorded in the superproject

for each submodule.

If --recursive is specified, this command will recurse into nested submodules, and show their

status as well.

If you are only interested in changes of the currently initialized submodules with respect to the

commit recorded in the index or the HEAD, git-status(1) and git-diff(1) will provide that

information too (and can also report changes to a submodule’s work tree).

init [--] [<path>...]

Initialize the submodules recorded in the index (which were added and committed elsewhere) by

setting submodule.$name.url in .git/config, using the same setting from .gitmodules as a template.

If the URL is relative, it will be resolved using the default remote. If there is no default remote,

the current repository will be assumed to be upstream.

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

Optional <path> arguments limit which submodules will be initialized. If no path is specified and

submodule.active has been configured, submodules configured to be active will be initialized,

otherwise all submodules are initialized.

It will also copy the value of submodule.$name.update, if present in the .gitmodules file, to

.git/config, but (1) this command does not alter existing information in .git/config, and (2)

submodule.$name.update that is set to a custom command is not copied for security reasons.

You can then customize the submodule clone URLs in .git/config for your local setup and proceed

to git submodule update; you can also just use git submodule update --init without the explicit init

step if you do not intend to customize any submodule locations.

See the add subcommand for the definition of default remote.

deinit [-f|--force] (--all|[--] <path>...)

Unregister the given submodules, i.e. remove the whole submodule.$name section from

.git/config together with their work tree. Further calls to git submodule update, git submodule
foreach and git submodule sync will skip any unregistered submodules until they are initialized

again, so use this command if you don’t want to have a local checkout of the submodule in your

working tree anymore.

When the command is run without pathspec, it errors out, instead of deinit-ing everything, to

prevent mistakes.

If --force is specified, the submodule’s working tree will be removed even if it contains local

modifications.

If you really want to remove a submodule from the repository and commit that use git-rm(1)

instead. See gitsubmodules(7) for removal options.

update [--init] [--remote] [-N|--no-fetch] [--[no-]recommend-shallow] [-f|--force]

[--checkout|--rebase|--merge] [--reference <repository>] [--depth <depth>] [--recursive] [--jobs <n>]

[--[no-]single-branch] [--filter <filter spec>] [--] [<path>...]

Update the registered submodules to match what the superproject expects by cloning missing

submodules, fetching missing commits in submodules and updating the working tree of the

submodules. The "updating" can be done in several ways depending on command line options and

the value of submodule.<name>.update configuration variable. The command line option takes

precedence over the configuration variable. If neither is given, a checkout is performed. (note:

what is in .gitmodules file is irrelevant at this point; see git submodule init above for how

.gitmodules is used). The update procedures supported both from the command line as well as

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

through the submodule.<name>.update configuration are:

checkout

the commit recorded in the superproject will be checked out in the submodule on a detached

HEAD.

If --force is specified, the submodule will be checked out (using git checkout --force), even if

the commit specified in the index of the containing repository already matches the commit

checked out in the submodule.

rebase

the current branch of the submodule will be rebased onto the commit recorded in the

superproject.

merge

the commit recorded in the superproject will be merged into the current branch in the

submodule.

The following update procedures have additional limitations:

custom command

mechanism for running arbitrary commands with the commit ID as an argument.

Specifically, if the submodule.<name>.update configuration variable is set to !custom
command, the object name of the commit recorded in the superproject for the submodule is

appended to the custom command string and executed. Note that this mechanism is not

supported in the .gitmodules file or on the command line.

none

the submodule is not updated. This update procedure is not allowed on the command line.

If the submodule is not yet initialized, and you just want to use the setting as stored in .gitmodules,

you can automatically initialize the submodule with the --init option.

If --recursive is specified, this command will recurse into the registered submodules, and update

any nested submodules within.

If --filter <filter spec> is specified, the given partial clone filter will be applied to the submodule.

See git-rev-list(1) for details on filter specifications.

set-branch (-b|--branch) <branch> [--] <path>, set-branch (-d|--default) [--] <path>

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

Sets the default remote tracking branch for the submodule. The --branch option allows the remote

branch to be specified. The --default option removes the submodule.<name>.branch configuration

key, which causes the tracking branch to default to the remote HEAD.

set-url [--] <path> <newurl>

Sets the URL of the specified submodule to <newurl>. Then, it will automatically synchronize the

submodule’s new remote URL configuration.

summary [--cached|--files] [(-n|--summary-limit) <n>] [commit] [--] [<path>...]

Show commit summary between the given commit (defaults to HEAD) and working tree/index.

For a submodule in question, a series of commits in the submodule between the given super

project commit and the index or working tree (switched by --cached) are shown. If the option

--files is given, show the series of commits in the submodule between the index of the super

project and the working tree of the submodule (this option doesn’t allow to use the --cached
option or to provide an explicit commit).

Using the --submodule=log option with git-diff(1) will provide that information too.

foreach [--recursive] <command>

Evaluates an arbitrary shell command in each checked out submodule. The command has access

to the variables $name, $sm_path, $displaypath, $sha1 and $toplevel: $name is the name of the

relevant submodule section in .gitmodules, $sm_path is the path of the submodule as recorded in

the immediate superproject, $displaypath contains the relative path from the current working

directory to the submodules root directory, $sha1 is the commit as recorded in the immediate

superproject, and $toplevel is the absolute path to the top-level of the immediate superproject.

Note that to avoid conflicts with $PATH on Windows, the $path variable is now a deprecated

synonym of $sm_path variable. Any submodules defined in the superproject but not checked out

are ignored by this command. Unless given --quiet, foreach prints the name of each submodule

before evaluating the command. If --recursive is given, submodules are traversed recursively (i.e.

the given shell command is evaluated in nested submodules as well). A non-zero return from the

command in any submodule causes the processing to terminate. This can be overridden by adding

|| : to the end of the command.

As an example, the command below will show the path and currently checked out commit for

each submodule:

git submodule foreach ’echo $sm_path ‘git rev-parse HEAD‘’

sync [--recursive] [--] [<path>...]

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

Synchronizes submodules’ remote URL configuration setting to the value specified in

.gitmodules. It will only affect those submodules which already have a URL entry in .git/config

(that is the case when they are initialized or freshly added). This is useful when submodule URLs

change upstream and you need to update your local repositories accordingly.

git submodule sync synchronizes all submodules while git submodule sync -- A synchronizes

submodule "A" only.

If --recursive is specified, this command will recurse into the registered submodules, and sync any

nested submodules within.

absorbgitdirs

If a git directory of a submodule is inside the submodule, move the git directory of the submodule

into its superproject’s $GIT_DIR/modules path and then connect the git directory and its working

directory by setting the core.worktree and adding a .git file pointing to the git directory embedded

in the superprojects git directory.

A repository that was cloned independently and later added as a submodule or old setups have the

submodules git directory inside the submodule instead of embedded into the superprojects git

directory.

This command is recursive by default.

OPTIONS
-q, --quiet

Only print error messages.

--progress

This option is only valid for add and update commands. Progress status is reported on the standard

error stream by default when it is attached to a terminal, unless -q is specified. This flag forces

progress status even if the standard error stream is not directed to a terminal.

--all

This option is only valid for the deinit command. Unregister all submodules in the working tree.

-b <branch>, --branch <branch>

Branch of repository to add as submodule. The name of the branch is recorded as

submodule.<name>.branch in .gitmodules for update --remote. A special value of . is used to

indicate that the name of the branch in the submodule should be the same name as the current

branch in the current repository. If the option is not specified, it defaults to the remote HEAD.

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

-f, --force

This option is only valid for add, deinit and update commands. When running add, allow adding

an otherwise ignored submodule path. When running deinit the submodule working trees will be

removed even if they contain local changes. When running update (only effective with the

checkout procedure), throw away local changes in submodules when switching to a different

commit; and always run a checkout operation in the submodule, even if the commit listed in the

index of the containing repository matches the commit checked out in the submodule.

--cached

This option is only valid for status and summary commands. These commands typically use the

commit found in the submodule HEAD, but with this option, the commit stored in the index is

used instead.

--files

This option is only valid for the summary command. This command compares the commit in the

index with that in the submodule HEAD when this option is used.

-n, --summary-limit

This option is only valid for the summary command. Limit the summary size (number of commits

shown in total). Giving 0 will disable the summary; a negative number means unlimited (the

default). This limit only applies to modified submodules. The size is always limited to 1 for

added/deleted/typechanged submodules.

--remote

This option is only valid for the update command. Instead of using the superproject’s recorded

SHA-1 to update the submodule, use the status of the submodule’s remote-tracking branch. The

remote used is branch’s remote (branch.<name>.remote), defaulting to origin. The remote branch

used defaults to the remote HEAD, but the branch name may be overridden by setting the

submodule.<name>.branch option in either .gitmodules or .git/config (with .git/config taking

precedence).

This works for any of the supported update procedures (--checkout, --rebase, etc.). The only

change is the source of the target SHA-1. For example, submodule update --remote --merge will

merge upstream submodule changes into the submodules, while submodule update --merge will

merge superproject gitlink changes into the submodules.

In order to ensure a current tracking branch state, update --remote fetches the submodule’s remote

repository before calculating the SHA-1. If you don’t want to fetch, you should use submodule
update --remote --no-fetch.

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

Use this option to integrate changes from the upstream subproject with your submodule’s current

HEAD. Alternatively, you can run git pull from the submodule, which is equivalent except for the

remote branch name: update --remote uses the default upstream repository and

submodule.<name>.branch, while git pull uses the submodule’s branch.<name>.merge. Prefer

submodule.<name>.branch if you want to distribute the default upstream branch with the

superproject and branch.<name>.merge if you want a more native feel while working in the

submodule itself.

-N, --no-fetch

This option is only valid for the update command. Don’t fetch new objects from the remote site.

--checkout

This option is only valid for the update command. Checkout the commit recorded in the

superproject on a detached HEAD in the submodule. This is the default behavior, the main use of

this option is to override submodule.$name.update when set to a value other than checkout. If the

key submodule.$name.update is either not explicitly set or set to checkout, this option is implicit.

--merge

This option is only valid for the update command. Merge the commit recorded in the superproject

into the current branch of the submodule. If this option is given, the submodule’s HEAD will not

be detached. If a merge failure prevents this process, you will have to resolve the resulting

conflicts within the submodule with the usual conflict resolution tools. If the key

submodule.$name.update is set to merge, this option is implicit.

--rebase

This option is only valid for the update command. Rebase the current branch onto the commit

recorded in the superproject. If this option is given, the submodule’s HEAD will not be detached.

If a merge failure prevents this process, you will have to resolve these failures with git-rebase(1).

If the key submodule.$name.update is set to rebase, this option is implicit.

--init

This option is only valid for the update command. Initialize all submodules for which "git

submodule init" has not been called so far before updating.

--name

This option is only valid for the add command. It sets the submodule’s name to the given string

instead of defaulting to its path. The name must be valid as a directory name and may not end with

a /.

--reference <repository>

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

This option is only valid for add and update commands. These commands sometimes need to

clone a remote repository. In this case, this option will be passed to the git-clone(1) command.

NOTE: Do not use this option unless you have read the note for git-clone(1)’s --reference,

--shared, and --dissociate options carefully.

--dissociate

This option is only valid for add and update commands. These commands sometimes need to

clone a remote repository. In this case, this option will be passed to the git-clone(1) command.

NOTE: see the NOTE for the --reference option.

--recursive

This option is only valid for foreach, update, status and sync commands. Traverse submodules

recursively. The operation is performed not only in the submodules of the current repo, but also in

any nested submodules inside those submodules (and so on).

--depth

This option is valid for add and update commands. Create a shallow clone with a history truncated

to the specified number of revisions. See git-clone(1)

--[no-]recommend-shallow

This option is only valid for the update command. The initial clone of a submodule will use the

recommended submodule.<name>.shallow as provided by the .gitmodules file by default. To

ignore the suggestions use --no-recommend-shallow.

-j <n>, --jobs <n>

This option is only valid for the update command. Clone new submodules in parallel with as many

jobs. Defaults to the submodule.fetchJobs option.

--[no-]single-branch

This option is only valid for the update command. Clone only one branch during update: HEAD or

one specified by --branch.

<path>...

Paths to submodule(s). When specified this will restrict the command to only operate on the

submodules found at the specified paths. (This argument is required with add).

FILES
When initializing submodules, a .gitmodules file in the top-level directory of the containing repository

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

is used to find the url of each submodule. This file should be formatted in the same way as

$GIT_DIR/config. The key to each submodule url is "submodule.$name.url". See gitmodules(5) for

details.

SEE ALSO
gitsubmodules(7), gitmodules(5).

GIT
Part of the git(1) suite

GIT-SUBMODULE(1) Git Manual GIT-SUBMODULE(1)

Git 2.42.0 2023-08-21 GIT-SUBMODULE(1)

