
NAME
gpgconf - Modify .gnupg home directories

SYNOPSIS
gpgconf [options] --list-components
gpgconf [options] --list-options component

gpgconf [options] --change-options component

DESCRIPTION
The gpgconf is a utility to automatically and reasonable safely query and modify configuration files in

the ‘.gnupg’ home directory. It is designed not to be invoked manually by the user, but automatically

by graphical user interfaces (GUI). ([Please note that currently no locking is done, so concurrent access

should be avoided. There are some precautions to avoid corruption with concurrent usage, but results

may be inconsistent and some changes may get lost. The stateless design makes it difficult to provide

more guarantees.])

gpgconf provides access to the configuration of one or more components of the GnuPG system. These

components correspond more or less to the programs that exist in the GnuPG framework, like GPG,

GPGSM, DirMngr, etc. But this is not a strict one-to-one relationship. Not all configuration options

are available through gpgconf. gpgconf provides a generic and abstract method to access the most

important configuration options that can feasibly be controlled via such a mechanism.

gpgconf can be used to gather and change the options available in each component, and can also

provide their default values. gpgconf will give detailed type information that can be used to restrict the

user’s input without making an attempt to commit the changes.

gpgconf provides the backend of a configuration editor. The configuration editor would usually be a

graphical user interface program that displays the current options, their default values, and allows the

user to make changes to the options. These changes can then be made active with gpgconf again. Such

a program that uses gpgconf in this way will be called GUI throughout this section.

COMMANDS
One of the following commands must be given:

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



--list-components
List all components. This is the default command used if none is specified.

--check-programs
List all available backend programs and test whether they are runnable.

--list-options component

List all options of the component component.

--change-options component

Change the options of the component component.

--check-options component

Check the options for the component component.

--apply-profile file

Apply the configuration settings listed in file to the configuration files. If file has no suffix and no

slashes the command first tries to read a file with the suffix .prf from the data directory (gpgconf
--list-dirs datadir) before it reads the file verbatim. A profile is divided into sections using the

bracketed component name. Each section then lists the option which shall go into the respective

configuration file.

--apply-defaults
Update all configuration files with values taken from the global configuration file (usually

‘/etc/gnupg/gpgconf.conf’). Note: This is a legacy mechanism. Please use global configuration

files instead.

--list-dirs [names]

-L Lists the directories used by gpgconf. One directory is listed per line, and each line consists of a

colon-separated list where the first field names the directory type (for example sysconfdir) and the

second field contains the percent-escaped directory. Although they are not directories, the socket

file names used by gpg-agent and dirmngr are printed as well. Note that the socket file names and

the homedir lines are the default names and they may be overridden by command line switches. If

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



names are given only the directories or file names specified by the list names are printed without

any escaping.

--list-config [filename]

List the global configuration file in a colon separated format. If filename is given, check that file

instead.

--check-config [filename]

Run a syntax check on the global configuration file. If filename is given, check that file instead.

--query-swdb package_name [version_string]

Returns the current version for package_name and if version_string is given also an indicator on

whether an update is available. The actual file with the software version is automatically

downloaded and checked by dirmngr. dirmngr uses a thresholds to avoid download the file too

often and it does this by default only if it can be done via Tor. To force an update of that file this

command can be used:

gpg-connect-agent --dirmngr ’loadswdb --force’ /bye

--reload [component]

-R Reload all or the given component. This is basically the same as sending a SIGHUP to the

component. Components which don’t support reloading are ignored. Without component or by

using "all" for component all components which are daemons are reloaded.

--launch [component]

If the component is not already running, start it. component must be a daemon. This is in general

not required because the system starts these daemons as needed. However, external software

making direct use of gpg-agent or dirmngr may use this command to ensure that they are started.

Using "all" for component launches all components which are daemons.

--kill [component]

-K Kill the given component that runs as a daemon, including gpg-agent, dirmngr, and scdaemon. A

component which does not run as a daemon will be ignored. Using "all" for component kills all

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



components running as daemons. Note that as of now reload and kill have the same effect for

scdaemon.

--create-socketdir
Create a directory for sockets below /run/user or /var/run/user. This is command is only required if

a non default home directory is used and the /run based sockets shall be used. For the default

home directory GnUPG creates a directory on the fly.

--remove-socketdir
Remove a directory created with command --create-socketdir.

OPTIONS
The following options may be used:

-o file

--output file

Write output to file. Default is to write to stdout.

-v
--verbose

Outputs additional information while running. Specifically, this extends numerical field values by

human-readable descriptions.

-q
--quiet

Try to be as quiet as possible.

--homedir dir

Set the name of the home directory to dir. If this option is not used, the home directory defaults to

‘~/.gnupg’. It is only recognized when given on the command line. It also overrides any home

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



directory stated through the environment variable ‘GNUPGHOME’ or (on Windows systems) by

means of the Registry entry HKCU\Software\GNU\GnuPG:HomeDir.

On Windows systems it is possible to install GnuPG as a portable application. In this case only

this command line option is considered, all other ways to set a home directory are ignored.

To install GnuPG as a portable application under Windows, create an empty file named

‘gpgconf.ctl’ in the same directory as the tool ‘gpgconf.exe’. The root of the installation is then

that directory; or, if ‘gpgconf.exe’ has been installed directly below a directory named ‘bin’, its

parent directory. You also need to make sure that the following directories exist and are writable:

‘ROOT/home’ for the GnuPG home and ‘ROOT/var/cache/gnupg’ for internal cache files.

--chuid uid

Change the current user to uid which may either be a number or a name. This can be used from the

root account to get information on the GnuPG environment of the specified user or to start or kill

daemons. If uid is not the current UID a standard PATH is set and the envvar GNUPGHOME is

unset. To override the latter the option --homedir can be used. This option has currently no effect

on Windows.

-n
--dry-run

Do not actually change anything. This is currently only implemented for --change-options and can

be used for testing purposes.

-r
--runtime

Only used together with --change-options. If one of the modified options can be changed in a

running daemon process, signal the running daemon to ask it to reparse its configuration file after

changing.

This means that the changes will take effect at run-time, as far as this is possible. Otherwise, they

will take effect at the next start of the respective backend programs.

--status-fd n

Write special status strings to the file descriptor n. This program returns the status messages

SUCCESS or FAILURE which are helpful when the caller uses a double fork approach and can’t

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



easily get the return code of the process.

USAGE
The command --list-components will list all components that can be configured with gpgconf. Usually,

one component will correspond to one GnuPG-related program and contain the options of that

program’s configuration file that can be modified using gpgconf. However, this is not necessarily the

case. A component might also be a group of selected options from several programs, or contain

entirely virtual options that have a special effect rather than changing exactly one option in one

configuration file.

A component is a set of configuration options that semantically belong together. Furthermore, several

changes to a component can be made in an atomic way with a single operation. The GUI could for

example provide a menu with one entry for each component, or a window with one tabulator sheet per

component.

The command --list-components lists all available components, one per line. The format of each line

is:

name:description:pgmname:

name
This field contains a name tag of the component. The name tag is used to specify the component

in all communication with gpgconf. The name tag is to be used verbatim. It is thus not in any

escaped format.

description
The string in this field contains a human-readable description of the component. It can be

displayed to the user of the GUI for informational purposes. It is percent-escaped and localized.

pgmname
The string in this field contains the absolute name of the program’s file. It can be used to

unambiguously invoke that program. It is percent-escaped.

Example:

$ gpgconf --list-components

gpg:GPG for OpenPGP:/usr/local/bin/gpg2:

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:

scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:

gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:

dirmngr:Directory Manager:/usr/local/bin/dirmngr:

Checking programs

The command --check-programs is similar to --list-components but works on backend programs and

not on components. It runs each program to test whether it is installed and runnable. This also

includes a syntax check of all config file options of the program.

The command --check-programs lists all available programs, one per line. The format of each line is:

name:description:pgmname:avail:okay:cfgfile:line:error:

name
This field contains a name tag of the program which is identical to the name of the component.

The name tag is to be used verbatim. It is thus not in any escaped format. This field may be empty

to indicate a continuation of error descriptions for the last name. The description and pgmname

fields are then also empty.

description
The string in this field contains a human-readable description of the component. It can be

displayed to the user of the GUI for informational purposes. It is percent-escaped and localized.

pgmname
The string in this field contains the absolute name of the program’s file. It can be used to

unambiguously invoke that program. It is percent-escaped.

avail
The boolean value in this field indicates whether the program is installed and runnable.

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



okay
The boolean value in this field indicates whether the program’s config file is syntactically okay.

cfgfile
If an error occurred in the configuration file (as indicated by a false value in the field okay), this

field has the name of the failing configuration file. It is percent-escaped.

line If an error occurred in the configuration file, this field has the line number of the failing statement

in the configuration file. It is an unsigned number.

error
If an error occurred in the configuration file, this field has the error text of the failing statement in

the configuration file. It is percent-escaped and localized.

In the following example the dirmngr is not runnable and the configuration file of scdaemon is not

okay.

$ gpgconf --check-programs

gpg:GPG for OpenPGP:/usr/local/bin/gpg2:1:1:

gpg-agent:GPG Agent:/usr/local/bin/gpg-agent:1:1:

scdaemon:Smartcard Daemon:/usr/local/bin/scdaemon:1:0:

gpgsm:GPG for S/MIME:/usr/local/bin/gpgsm:1:1:

dirmngr:Directory Manager:/usr/local/bin/dirmngr:0:0:

The command configuration file in the same manner as --check-programs, but only for the component

component.

Listing options

Every component contains one or more options. Options may be gathered into option groups to allow

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



the GUI to give visual hints to the user about which options are related.

The command lists all options (and the groups they belong to) in the component component, one per

line. component must be the string in the field name in the output of the --list-components command.

There is one line for each option and each group. First come all options that are not in any group.

Then comes a line describing a group. Then come all options that belong into each group. Then comes

the next group and so on. There does not need to be any group (and in this case the output will stop

after the last non-grouped option).

The format of each line is:

name:flags:level:description:type:alt-type:argname:default:argdef:value

name
This field contains a name tag for the group or option. The name tag is used to specify the group

or option in all communication with gpgconf. The name tag is to be used verbatim. It is thus not

in any escaped format.

flags
The flags field contains an unsigned number. Its value is the OR-wise combination of the

following flag values:

group (1)
If this flag is set, this is a line describing a group and not an option.

The following flag values are only defined for options (that is, if the group flag is not used).

optional arg (2)
If this flag is set, the argument is optional. This is never set for type 0 (none) options.

list (4)
If this flag is set, the option can be given multiple times.

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



runtime (8)
If this flag is set, the option can be changed at runtime.

default (16)
If this flag is set, a default value is available.

default desc (32)
If this flag is set, a (runtime) default is available. This and the default flag are mutually

exclusive.

no arg desc (64)
If this flag is set, and the optional arg flag is set, then the option has a special meaning if no

argument is given.

no change (128)
If this flag is set, gpgconf ignores requests to change the value. GUI frontends should grey out

this option. Note, that manual changes of the configuration files are still possible.

level
This field is defined for options and for groups. It contains an unsigned number that specifies the

expert level under which this group or option should be displayed. The following expert levels are

defined for options (they have analogous meaning for groups):

basic (0)
This option should always be offered to the user.

advanced (1)
This option may be offered to advanced users.

expert (2)
This option should only be offered to expert users.

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



invisible (3)
This option should normally never be displayed, not even to expert users.

internal (4)
This option is for internal use only. Ignore it.

The level of a group will always be the lowest level of all options it contains.

description
This field is defined for options and groups. The string in this field contains a human-readable

description of the option or group. It can be displayed to the user of the GUI for informational

purposes. It is percent-escaped and localized.

type
This field is only defined for options. It contains an unsigned number that specifies the type of the

option’s argument, if any. The following types are defined:

Basic types:

none (0)
No argument allowed.

string (1)
An unformatted string.

int32 (2)
A signed number.

uint32 (3)
An unsigned number.

Complex types:

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



pathname (32)
A string that describes the pathname of a file. The file does not necessarily need to exist.

ldap server (33)
A string that describes an LDAP server in the format:

hostname:port:username:password:base_dn

key fingerprint (34)
A string with a 40 digit fingerprint specifying a certificate.

pub key (35)
A string that describes a certificate by user ID, key ID or fingerprint.

sec key (36)
A string that describes a certificate with a key by user ID, key ID or fingerprint.

alias list (37)
A string that describes an alias list, like the one used with gpg’s group option. The list

consists of a key, an equal sign and space separated values.

More types will be added in the future. Please see the alt-type field for information on how to cope

with unknown types.

alt-type
This field is identical to type, except that only the types 0 to 31 are allowed. The GUI is expected

to present the user the option in the format specified by type. But if the argument type type is not

supported by the GUI, it can still display the option in the more generic basic type alt-type. The

GUI must support all the defined basic types to be able to display all options. More basic types

may be added in future versions. If the GUI encounters a basic type it doesn’t support, it should

report an error and abort the operation.

argname

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



This field is only defined for options with an argument type type that is not 0. In this case it may

contain a percent-escaped and localized string that gives a short name for the argument. The field

may also be empty, though, in which case a short name is not known.

default
This field is defined only for options for which the default or default desc flag is set. If the default
flag is set, its format is that of an option argument (see: [Format conventions], for details). If the

default value is empty, then no default is known. Otherwise, the value specifies the default value

for this option. If the default desc flag is set, the field is either empty or contains a description of

the effect if the option is not given.

argdef
This field is defined only for options for which the optional arg flag is set. If the no arg desc flag

is not set, its format is that of an option argument (see: [Format conventions], for details). If the

default value is empty, then no default is known. Otherwise, the value specifies the default

argument for this option. If the no arg desc flag is set, the field is either empty or contains a

description of the effect of this option if no argument is given.

value
This field is defined only for options. Its format is that of an option argument. If it is empty, then

the option is not explicitly set in the current configuration, and the default applies (if any).

Otherwise, it contains the current value of the option. Note that this field is also meaningful if the

option itself does not take a real argument (in this case, it contains the number of times the option

appears).

Changing options

The command to change the options of the component component to the specified values. component

must be the string in the field name in the output of the --list-components command. You have to

provide the options that shall be changed in the following format on standard input:

name:flags:new-value

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



name
This is the name of the option to change. name must be the string in the field name in the output of

the --list-options command.

flags
The flags field contains an unsigned number. Its value is the OR-wise combination of the

following flag values:

default (16)
If this flag is set, the option is deleted and the default value is used instead (if applicable).

new-value
The new value for the option. This field is only defined if the default flag is not set. The format is

that of an option argument. If it is empty (or the field is omitted), the default argument is used

(only allowed if the argument is optional for this option). Otherwise, the option will be set to the

specified value.

The output of the command is the same as that of --check-options for the modified configuration file.

Examples:

To set the force option, which is of basic type none (0):

$ echo ’force:0:1’ | gpgconf --change-options dirmngr

To delete the force option:

$ echo ’force:16:’ | gpgconf --change-options dirmngr

The --runtime option can influence when the changes take effect.

Listing global options

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



Some legacy applications look at the global configuration file for the gpgconf tool itself; this is the file

‘gpgconf.conf’. Modern applications should not use it but use per component global configuration files

which are more flexible than the ‘gpgconf.conf’. Using both files is not suggested.

The colon separated listing format is record oriented and uses the first field to identify the record type:

k This describes a key record to start the definition of a new ruleset for a user/group. The format of

a key record is:

k:user:group:

user
This is the user field of the key. It is percent escaped. See the definition of the gpgconf.conf

format for details.

group
This is the group field of the key. It is percent escaped.

r This describes a rule record. All rule records up to the next key record make up a rule set for that

key. The format of a rule record is:

r:::component:option:flag:value:

component
This is the component part of a rule. It is a plain string.

option
This is the option part of a rule. It is a plain string.

flag
This is the flags part of a rule. There may be only one flag per rule but by using the same

component and option, several flags may be assigned to an option. It is a plain string.

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



value
This is the optional value for the option. It is a percent escaped string with a single quotation

mark to indicate a string. The quotation mark is only required to distinguish between no value

specified and an empty string.

Unknown record types should be ignored. Note that there is intentionally no feature to change the

global option file through gpgconf.

Get and compare software versions.

The GnuPG Project operates a server to query the current versions of software packages related to

GnuPG. gpgconf can be used to access this online database. To allow for offline operations, this

feature works by having dirmngr download a file from https://versions.gnupg.org, checking the

signature of that file and storing the file in the GnuPG home directory. If gpgconf is used and dirmngr
is running, it may ask dirmngr to refresh that file before itself uses the file.

The command --query-swdb returns information for the given package in a colon delimited format:

name
This is the name of the package as requested. Note that "gnupg" is a special name which is

replaced by the actual package implementing this version of GnuPG. For this name it is also not

required to specify a version because gpgconf takes its own version in this case.

iversion
The currently installed version or an empty string. The value is taken from the command line

argument but may be provided by gpg if not given.

status
The status of the software package according to this table:

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



- No information available. This is either because no current version has been specified or due

to an error.

? The given name is not known in the online database.

u An update of the software is available.

c The installed version of the software is current.

n The installed version is already newer than the released version.

urgency
If the value (the empty string should be considered as zero) is greater than zero an important

update is available.

error
This returns an gpg-error error code to distinguish between various failure modes.

filedate
This gives the date of the file with the version numbers in standard ISO format

(yyyymmddThhmmss). The date has been extracted by dirmngr from the signature of the file.

verified
This gives the date in ISO format the file was downloaded. This value can be used to evaluate the

freshness of the information.

version
This returns the version string for the requested software from the file.

reldate
This returns the release date in ISO format.

size

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)



This returns the size of the package as decimal number of bytes.

hash
This returns a hexified SHA-2 hash of the package.

More fields may be added in future to the output.

FILES
/etc/gnupg/gpgconf.conf

If this file exists, it is processed as a global configuration file.

This is a legacy mechanism which should not be used tigether with

the modern global per component configuration files. A commented

example can be found in the ‘examples’ directory of the

distribution.

GNUPGHOME/swdb.lst

A file with current software versions. dirmngr creates

this file on demand from an online resource.

SEE ALSO
gpg(1), gpgsm(1), gpg-agent(1), scdaemon(1), dirmngr(1)

The full documentation for this tool is maintained as a Texinfo manual. If GnuPG and the info

program are properly installed at your site, the command

info gnupg

should give you access to the complete manual including a menu structure and an index.

GPGCONF(1) GNU Privacy Guard 2.4 GPGCONF(1)

GnuPG 2.4.3 2023-12-14 GPGCONF(1)


