
NAME
inetd - internet "super-server"

SYNOPSIS
inetd [-dlWw] [-a address] [-C rate] [-c maximum] [-p filename] [-R rate] [-s maximum]

[configuration_file]

DESCRIPTION
The inetd utility should be run at boot time by /etc/rc (see rc(8)). It then listens for connections on

certain internet sockets. When a connection is found on one of its sockets, it decides what service the

socket corresponds to, and invokes a program to service the request. The server program is invoked

with the service socket as its standard input, output and error descriptors. After the program is finished,

inetd continues to listen on the socket (except in some cases which will be described below).

Essentially, inetd allows running one daemon to invoke several others, reducing load on the system.

The following options are available:

-a address

Specify one specific IP address to bind to. Alternatively, a hostname can be specified, in which

case the IPv4 or IPv6 address which corresponds to that hostname is used. Usually a hostname is

specified when inetd is run inside a jail(8), in which case the hostname corresponds to that of the

jail(8) environment.

When the hostname specification is used and both IPv4 and IPv6 bindings are desired, one entry

with the appropriate protocol type for each binding is required for each service in /etc/inetd.conf.

For example, a TCP-based service would need two entries, one using "tcp4" for the protocol and

the other using "tcp6". See the explanation of the /etc/inetd.conf protocol field below.

-C rate

Specify the default maximum number of times a service can be invoked from a single IP address

in one minute; the default is unlimited. May be overridden on a per-service basis with the "max-

connections-per-ip-per-minute" parameter.

-c maximum

Specify the default maximum number of simultaneous invocations of each service; the default is

unlimited. May be overridden on a per-service basis with the "max-child" parameter.

-d Turn on debugging.

-l Turn on logging of successful connections.

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



-p Specify an alternate file in which to store the process ID.

-R rate

Specify the maximum number of times a service can be invoked in one minute; the default is

256. A rate of 0 allows an unlimited number of invocations.

-s maximum

Specify the default maximum number of simultaneous invocations of each service from a single

IP address; the default is unlimited. May be overridden on a per-service basis with the "max-

child-per-ip" parameter.

-W Turn on TCP Wrapping for internal services which are built in to inetd.

-w Turn on TCP Wrapping for external services. See the IMPLEMENTATION NOTES section for

more information on TCP Wrappers support.

Upon execution, inetd reads its configuration information from a configuration file which, by default, is

/etc/inetd.conf. There must be an entry for each field of the configuration file, with entries for each field

separated by a tab or a space. Comments are denoted by a "#" at the beginning of a line. There must be

an entry for each field. The fields of the configuration file are as follows:

service-name

socket-type

protocol

{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]

user[:group][/login-class]

server-program

server-program-arguments

To specify an ONC RPC-based service, the entry would contain these fields:

service-name/version

socket-type

rpc/protocol

{wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]]

user[:group][/login-class]

server-program

server-program-arguments

There are two types of services that inetd can start: standard and TCPMUX. A standard service has a

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



well-known port assigned to it; it may be a service that implements an official Internet standard or is a

BSD-specific service. As described in RFC 1078, TCPMUX services are nonstandard services that do

not have a well-known port assigned to them. They are invoked from inetd when a program connects to

the "tcpmux" well-known port and specifies the service name. This feature is useful for adding locally-

developed servers. TCPMUX requests are only accepted when the multiplexor service itself is enabled,

above and beyond and specific TCPMUX-based servers; see the discussion of internal services below.

The service-name entry is the name of a valid service in the file /etc/services, or the specification of a

UNIX domain socket (see below). For "internal" services (discussed below), the service name should be

the official name of the service (that is, the first entry in /etc/services). When used to specify an ONC

RPC-based service, this field is a valid RPC service name listed in the file /etc/rpc. The part on the right

of the "/" is the RPC version number. This can simply be a single numeric argument or a range of

versions. A range is bounded by the low version to the high version - "rusers/1-3". For TCPMUX

services, the value of the service-name field consists of the string "tcpmux" followed by a slash and the

locally-chosen service name. The service names listed in /etc/services and the name "help" are reserved.

Try to choose unique names for your TCPMUX services by prefixing them with your organization’s

name and suffixing them with a version number.

The socket-type should be one of "stream", "dgram", "raw", "rdm", or "seqpacket", depending on

whether the socket is a stream, datagram, raw, reliably delivered message, or sequenced packet socket.

TCPMUX services must use "stream".

The protocol must be a valid protocol or "unix". Examples are "tcp" or "udp", both of which imply IPv4

for backward compatibility. The names "tcp4" and "udp4" specify IPv4 only. The names "tcp6" and

"udp6" specify IPv6 only. The names "tcp46" and "udp46" specify that the entry accepts both IPv4 and

IPv6 connections via a wildcard AF_INET6 socket. Rpc based services are specified with the "rpc/tcp"

or "rpc/udp" service type. One can use specify IPv4 and/or IPv6 with the 4, 6 or 46 suffix, for example

"rpc/tcp6" or "rpc/udp46". TCPMUX services must use "tcp", "tcp4", "tcp6" or "tcp46".

The wait/nowait entry specifies whether the server that is invoked by inetd will take over the socket

associated with the service access point, and thus whether inetd should wait for the server to exit before

listening for new service requests. Datagram servers must use "wait", as they are always invoked with

the original datagram socket bound to the specified service address. These servers must read at least one

datagram from the socket before exiting. If a datagram server connects to its peer, freeing the socket so

inetd can receive further messages on the socket, it is said to be a "multi-threaded" server; it should read

one datagram from the socket and create a new socket connected to the peer. It should fork, and the

parent should then exit to allow inetd to check for new service requests to spawn new servers. Datagram

servers which process all incoming datagrams on a socket and eventually time out are said to be

"single-threaded". The comsat(8) and talkd(8) utilities are examples of the latter type of datagram

server. The tftpd(8) utility is an example of a multi-threaded datagram server.

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



Servers using stream sockets generally are multi-threaded and use the "nowait" entry. Connection

requests for these services are accepted by inetd, and the server is given only the newly-accepted socket

connected to a client of the service. Most stream-based services operate in this manner. Stream-based

servers that use "wait" are started with the listening service socket, and must accept at least one

connection request before exiting. Such a server would normally accept and process incoming

connection requests until a timeout. TCPMUX services must use "nowait".

The maximum number of outstanding child processes (or "threads") for a "nowait" service may be

explicitly specified by appending a "/" followed by the number to the "nowait" keyword. Normally (or

if a value of zero is specified) there is no maximum. Otherwise, once the maximum is reached, further

connection attempts will be queued up until an existing child process exits. This also works in the case

of "wait" mode, although a value other than one (the default) might not make sense in some cases. You

can also specify the maximum number of connections per minute for a given IP address by appending a

"/" followed by the number to the maximum number of outstanding child processes. Once the maximum

is reached, further connections from this IP address will be dropped until the end of the minute. In

addition, you can specify the maximum number of simultaneous invocations of each service from a

single IP address by appending a "/" followed by the number to the maximum number of outstanding

child processes. Once the maximum is reached, further connections from this IP address will be

dropped.

The user entry should contain the user name of the user as whom the server should run. This allows for

servers to be given less permission than root. The optional group part separated by ":" allows a group

name other than the default group for this user to be specified. The optional login-class part separated

by "/" allows specification of a login class other than the default "daemon" login class.

The server-program entry should contain the pathname of the program which is to be executed by inetd
when a request is found on its socket. If inetd provides this service internally, this entry should be

"internal".

The server-program-arguments entry lists the arguments to be passed to the server-program, starting

with argv[0], which usually is the name of the program. If the service is provided internally, the

service-name of the service (and any arguments to it) or the word "internal" should take the place of this

entry.

Currently, the only internal service to take arguments is "auth". Without options, the service will always

return "ERROR : HIDDEN-USER". The available arguments to this service that alter its behavior are:

-d fallback

Provide a fallback username. If the real "auth" service is enabled (with the -r option discussed

below), return this username instead of an error when lookups fail for either socket credentials or

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



the username. If the real "auth" service is disabled, return this username for every request. This

is primarily useful when running this service on a NAT machine.

-F Same as -f but without the restriction that the username in .fakeid must not match an existing

user.

-f If the file .fakeid exists in the home directory of the identified user, report the username found in

that file instead of the real username. If the username found in .fakeid is that of an existing user,

then the real username is reported. If the -i flag is also given then the username in .fakeid is

checked against existing user IDs instead.

-g Instead of returning the user’s name to the ident requester, report a username made up of random

alphanumeric characters, e.g., "c0c993". The -g flag overrides not only the user names, but also

any fallback name, .fakeid or .noident files.

-i Return numeric user IDs instead of usernames.

-n If the file .noident exists in the home directory of the identified user, return "ERROR :

HIDDEN-USER". This overrides any fakeid file which might exist.

-o osname

Use osname instead of the name of the system as reported by uname(3).

-r Offer a real "auth" service, as per RFC 1413. All the remaining flags apply only in this case.

-t sec[.usec]

Specify a timeout for the service. The default timeout is 10.0 seconds.

The inetd utility also provides several other "trivial" services internally by use of routines within itself.

These services are "echo", "discard", "chargen" (character generator), "daytime" (human readable time),

and "time" (machine readable time, in the form of the number of seconds since midnight, January 1,

1900). All of these services are available in both TCP and UDP versions; the UDP versions will refuse

service if the request specifies a reply port corresponding to any internal service. (This is done as a

defense against looping attacks; the remote IP address is logged.) For details of these services, consult

the appropriate RFC document.

The TCPMUX-demultiplexing service is also implemented as an internal service. For any TCPMUX-

based service to function, the following line must be included in inetd.conf:

tcpmux stream tcp nowait root internal

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



When given the -l option inetd will log an entry to syslog each time a connection is accepted, noting the

service selected and the IP-number of the remote requester if available. Unless otherwise specified in

the configuration file, and in the absence of the -W and -w options, inetd will log to the "daemon"

facility.

The inetd utility rereads its configuration file when it receives a hangup signal, SIGHUP. Services may

be added, deleted or modified when the configuration file is reread. Except when started in debugging

mode, or configured otherwise with the -p option, inetd records its process ID in the file

/var/run/inetd.pid to assist in reconfiguration.

IMPLEMENTATION NOTES
TCP Wrappers
When given the -w option, inetd will wrap all services specified as "stream nowait" or "dgram" except

for "internal" services. If the -W option is given, such "internal" services will be wrapped. If both

options are given, wrapping for both internal and external services will be enabled. Either wrapping

option will cause failed connections to be logged to the "auth" syslog facility. Adding the -l flag to the

wrapping options will include successful connections in the logging to the "auth" facility.

Note that inetd only wraps requests for a "wait" service while no servers are available to service

requests. Once a connection to such a service has been allowed, inetd has no control over subsequent

connections to the service until no more servers are left listening for connection requests.

When wrapping is enabled, the tcpd daemon is not required, as that functionality is builtin. For more

information on TCP Wrappers, see the relevant documentation (hosts_access(5)). When reading that

document, keep in mind that "internal" services have no associated daemon name. Therefore, the

service name as specified in inetd.conf should be used as the daemon name for "internal" services.

TCPMUX
RFC 1078 describes the TCPMUX protocol: ‘‘A TCP client connects to a foreign host on TCP port 1. It

sends the service name followed by a carriage-return line-feed <CRLF>. The service name is never case

sensitive. The server replies with a single character indicating positive (+) or negative (-)

acknowledgment, immediately followed by an optional message of explanation, terminated with a

<CRLF>. If the reply was positive, the selected protocol begins; otherwise the connection is closed.’’

The program is passed the TCP connection as file descriptors 0 and 1.

If the TCPMUX service name begins with a "+", inetd returns the positive reply for the program. This

allows you to invoke programs that use stdin/stdout without putting any special server code in them.

The special service name "help" causes inetd to list the TCPMUX services which are enabled in

inetd.conf.

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



IPsec
The implementation includes a tiny hack to support IPsec policy settings for each socket. A special

form of comment line, starting with "#@", is interpreted as a policy specifier. Everything after the "#@"

will be used as an IPsec policy string, as described in ipsec_set_policy(3). Each policy specifier is

applied to all the following lines in inetd.conf until the next policy specifier. An empty policy specifier

resets the IPsec policy.

If an invalid IPsec policy specifier appears in inetd.conf, inetd will provide an error message via the

syslog(3) interface and abort execution.

UNIX Domain Sockets
In addition to running services on IP sockets, inetd can also manage UNIX domain sockets. To do this

you specify a protocol of "unix" and specify the UNIX domain socket as the service-name. The

service-type may be "stream" or "dgram". The specification of the socket must be an absolute path

name, optionally prefixed by an owner and mode of the form :user:group:mode:. The specification:

:news:daemon:220:/var/run/sock

creates a socket owned by user "news" in group "daemon" with permissions allowing only that user and

group to connect. The default owner is the user that inetd is running as. The default mode only allows

the socket’s owner to connect.

WARNING: while creating a UNIX domain socket, inetd must change the ownership and permissions

on the socket. This can only be done securely if the directory in which the socket is created is writable

only by root. Do NOT use inetd to create sockets in world writable directories such as /tmp; use /var/run

or a similar directory instead.

Internal services may be run on UNIX domain sockets, in the usual way. In this case the name of the

internal service is determined using the last component of the socket’s pathname. For example,

specifying a socket named /var/run/chargen would invoke the "chargen" service when a connection is

received on that socket.

FILES
/etc/inetd.conf configuration file

/etc/netconfig network configuration data base

/etc/rpc translation of service names to RPC program numbers

/etc/services translation of service names to port numbers

/var/run/inetd.pid the pid of the currently running inetd

EXAMPLES

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



Examples for a variety of services are available in /etc/inetd.conf.

It includes examples for bootpd, comsat, cvs, date, fingerd, ftpd, imapd, nc, nmbd, nntpd, rlogind,

rpc.rquotad, rpc.rusersd, rpc.rwalld, rpc.statd, rpc.sprayd, rshd, prometheus_sysctl_exporter, smtpd,

smbd, swat talkd, telnetd, tftpd, uucpd.

The internal services provided by inetd for daytime, time, echo, discard and chargen are also included,

as well as chargen for ipsec Authentication Headers

Examples for handling auth requests via identd, are similarly included.

ERROR MESSAGES
The inetd server logs error messages using syslog(3). Important error messages and their explanations

are:

service/protocol server failing (looping), service terminated.

The number of requests for the specified service in the past minute exceeded the limit. The limit exists

to prevent a broken program or a malicious user from swamping the system. This message may occur

for several reasons:

1. There are many hosts requesting the service within a short time period.

2. A broken client program is requesting the service too frequently.

3. A malicious user is running a program to invoke the service in a denial-of-service attack.

4. The invoked service program has an error that causes clients to retry quickly.

Use the -R rate option, as described above, to change the rate limit. Once the limit is reached, the

service will be reenabled automatically in 10 minutes.

service/protocol: No such user user, service ignored

service/protocol: getpwnam: user: No such user

No entry for user exists in the passwd(5) database. The first message occurs when inetd (re)reads the

configuration file. The second message occurs when the service is invoked.

service: can’t set uid uid

service: can’t set gid gid

The user or group ID for the entry’s user field is invalid.

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11



setsockopt(SO_PRIVSTATE): Operation not supported

The inetd utility attempted to renounce the privileged state associated with a socket but was unable to.

unknown rpc/udp or rpc/tcp

No entry was found for either udp or tcp in the netconfig(5) database.

unknown rpc/udp6 or rpc/tcp6

No entry was found for either udp6 or tcp6 in the netconfig(5) database.

SEE ALSO
cvs(1) (ports/devel/opencvs), date(1), nc(1), ipsec_set_policy(3), ipsec(4), hosts_access(5),

hosts_options(5), login.conf(5), netconfig(5), passwd(5), rpc(5), services(5), bootpd(8), comsat(8),

fingerd(8), ftpd(8), imapd(8) (ports/mail/courier-imap), nmbd(8) (ports/net/samba412), rlogind(8),

rpc.rquotad(8), rpc.rusersd(8), rpc.rwalld(8), rpc.statd(8), rshd(8), prometheus_sysctl_exporter(8),

smbd(8) (ports/net/samba412), talkd(8), telnetd(8) (ports/net/freebsd-telnetd), tftpd(8), uucpd(8)

(ports/net/freebsd-uucp)

Michael C. St. Johns, Identification Protocol, RFC1413.

HISTORY
The inetd utility appeared in 4.3BSD. TCPMUX is based on code and documentation by Mark Lottor.

Support for ONC RPC-based services is modeled after that provided by SunOS 4.1. The IPsec hack was

contributed by the KAME project in 1999. The FreeBSD TCP Wrappers support first appeared in

FreeBSD 3.2.

INETD(8) FreeBSD System Manager’s Manual INETD(8)

FreeBSD 14.0-RELEASE-p11 September 29, 2022 FreeBSD 14.0-RELEASE-p11


