
NAME
KASAN - Kernel Address SANitizer

SYNOPSIS
The GENERIC-KASAN kernel configuration can be used to compile a KASAN-enabled kernel using

GENERIC as a base configuration. Alternately, to compile KASAN into the kernel, place the following

line in your kernel configuration file:

options KASAN

#include <sys/asan.h>

void

kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code);

DESCRIPTION
KASAN is a subsystem which leverages compiler instrumentation to detect invalid memory accesses in

the kernel. Currently it is implemented on the amd64 and arm64 platforms.

When KASAN is compiled into the kernel, the compiler is configured to emit function calls upon every

memory access. The functions are implemented by KASAN and permit run-time detection of several

types of bugs including use-after-frees, double frees and frees of invalid pointers, and out-of-bounds

accesses. These protections apply to memory allocated by uma(9), malloc(9) and related functions, and

kmem_malloc() and related functions, as well as global variables and kernel stacks. KASAN is

conservative and will not detect all instances of these types of bugs. Memory accesses through the

kernel map are sanitized, but accesses via the direct map are not. When KASAN is configured, the

kernel aims to minimize its use of the direct map.

IMPLEMENTATION NOTES
KASAN is implemented using compiler instrumentation and a kernel runtime. When a kernel is built

with the KASAN option enabled, the compiler inserts function calls before most memory accesses in the

generated code. The runtime implements the corresponding functions, which decide whether a given

access is valid. If not, the runtime prints a warning or panics the kernel, depending on the value of the

debug.kasan.panic_on_violation sysctl/tunable.

The KASAN runtime works by maintaining a shadow map for the kernel map. There exists a linear

mapping between addresses in the kernel map and addresses in the shadow map. The shadow map is

used to store information about the current state of allocations from the kernel map. For example, when

a buffer is returned by malloc(9), the corresponding region of the shadow map is marked to indicate that

the buffer is valid. When it is freed, the shadow map is updated to mark the buffer as invalid. Accesses

KASAN(9) FreeBSD Kernel Developer’s Manual KASAN(9)

FreeBSD 14.0-RELEASE-p11 March 23, 2023 FreeBSD 14.0-RELEASE-p11



to the buffer are intercepted by the KASAN runtime and validated using the contents of the shadow

map.

Upon booting, all kernel memory is marked as valid. Kernel allocators must mark cached but free

buffers as invalid, and must mark them valid before freeing the kernel virtual address range. This

slightly reduces the effectiveness of KASAN but simplifies its maintenance and integration into the

kernel.

Updates to the shadow map are performed by calling kasan_mark(). Parameter addr is the address of the

buffer whose shadow is to be updated, size is the usable size of the buffer, and redzsize is the full size of

the buffer allocated from lower layers of the system. redzsize must be greater than or equal to size. In

some cases kernel allocators will return a buffer larger than that requested by the consumer; the unused

space at the end is referred to as a red zone and is always marked as invalid. code allows the caller to

specify an identifier used when marking a buffer as invalid. The identifier is included in any reports

generated by KASAN and helps identify the source of the invalid access. For instance, when an item is

freed to a uma(9) zone, the item is marked with KASAN_UMA_FREED. See <sys/asan.h> for the

available identifiers. If the entire buffer is to be marked valid, i.e., size and redzsize are equal, code

should be 0.

SEE ALSO
build(7), KMSAN(9), malloc(9), memguard(9), redzone(9), uma(9)

HISTORY
KASAN was ported from NetBSD and first appeared in FreeBSD 14.0.

BUGS
Accesses to kernel memory outside of the kernel map are ignored by the KASAN runtime. When

KASAN is configured, the kernel memory allocators are configured to use the kernel map, but some

uses of the direct map remain. For example, on amd64 and arm64, accesses to page table pages are not

tracked.

Some kernel memory allocators explicitly permit accesses after an object has been freed. These cannot

be sanitized by KASAN. For example, memory from all uma(9) zones initialized with the

UMA_ZONE_NOFREE flag are not sanitized.

KASAN(9) FreeBSD Kernel Developer’s Manual KASAN(9)

FreeBSD 14.0-RELEASE-p11 March 23, 2023 FreeBSD 14.0-RELEASE-p11


