
NAME
kqueue, kevent - kernel event notification mechanism

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/event.h>

int

kqueue(void);

int

kqueuex(u_int flags);

int

kevent(int kq, const struct kevent *changelist, int nchanges, struct kevent *eventlist, int nevents,

const struct timespec *timeout);

EV_SET(kev, ident, filter, flags, fflags, data, udata);

DESCRIPTION
The kqueue() system call provides a generic method of notifying the user when an event happens or a

condition holds, based on the results of small pieces of kernel code termed filters. A kevent is identified

by the (ident, filter) pair; there may only be one unique kevent per kqueue.

The filter is executed upon the initial registration of a kevent in order to detect whether a preexisting

condition is present, and is also executed whenever an event is passed to the filter for evaluation. If the

filter determines that the condition should be reported, then the kevent is placed on the kqueue for the

user to retrieve.

The filter is also run when the user attempts to retrieve the kevent from the kqueue. If the filter indicates

that the condition that triggered the event no longer holds, the kevent is removed from the kqueue and is

not returned.

Multiple events which trigger the filter do not result in multiple kevents being placed on the kqueue;

instead, the filter will aggregate the events into a single struct kevent. Calling close() on a file descriptor

will remove any kevents that reference the descriptor.

The kqueue() system call creates a new kernel event queue and returns a descriptor. The queue is not

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

inherited by a child created with fork(2). However, if rfork(2) is called without the RFFDG flag, then

the descriptor table is shared, which will allow sharing of the kqueue between two processes.

The kqueuex() system call also creates a new kernel event queue, and additionally takes the flags

argument, which is a bitwise-inclusive OR of the following flags:

KQUEUE_CLOEXEC The returned file descriptor is automatically closed on execve(2)

The ‘fd = kqueue()’ call is equivalent to ‘fd = kqueuex(0)’.

For compatibility with NetBSD, the kqueue1() function is provided, which accepts the O_CLOEXEC

flag with the expected semantic.

The kevent() system call is used to register events with the queue, and return any pending events to the

user. The changelist argument is a pointer to an array of kevent structures, as defined in <sys/event.h>.

All changes contained in the changelist are applied before any pending events are read from the queue.

The nchanges argument gives the size of changelist. The eventlist argument is a pointer to an array of

kevent structures. The nevents argument determines the size of eventlist. When nevents is zero,

kevent() will return immediately even if there is a timeout specified unlike select(2). If timeout is a non-

NULL pointer, it specifies a maximum interval to wait for an event, which will be interpreted as a struct

timespec. If timeout is a NULL pointer, kevent() waits indefinitely. To effect a poll, the timeout

argument should be non-NULL, pointing to a zero-valued timespec structure. The same array may be

used for the changelist and eventlist.

The EV_SET() macro is provided for ease of initializing a kevent structure.

The kevent structure is defined as:

struct kevent {

uintptr_t ident; /* identifier for this event */

short filter; /* filter for event */

u_short flags; /* action flags for kqueue */

u_int fflags; /* filter flag value */

int64_t data; /* filter data value */

void *udata; /* opaque user data identifier */

uint64_t ext[4]; /* extensions */

};

The fields of struct kevent are:

ident Value used to identify this event. The exact interpretation is determined by the attached filter,

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

but often is a file descriptor.

filter Identifies the kernel filter used to process this event. The pre-defined system filters are

described below.

flags Actions to perform on the event.

fflags Filter-specific flags.

data Filter-specific data value.

udata Opaque user-defined value passed through the kernel unchanged.

ext Extended data passed to and from kernel. The ext[0] and ext[1] members use is defined by the

filter. If the filter does not use them, the members are copied unchanged. The ext[2] and

ext[3] members are always passed through the kernel as-is, making additional context available

to application.

The flags field can contain the following values:

EV_ADD Adds the event to the kqueue. Re-adding an existing event will modify the parameters

of the original event, and not result in a duplicate entry. Adding an event

automatically enables it, unless overridden by the EV_DISABLE flag.

EV_ENABLE Permit kevent() to return the event if it is triggered.

EV_DISABLE Disable the event so kevent() will not return it. The filter itself is not disabled.

EV_DISPATCH Disable the event source immediately after delivery of an event. See EV_DISABLE

above.

EV_DELETE Removes the event from the kqueue. Events which are attached to file descriptors are

automatically deleted on the last close of the descriptor.

EV_RECEIPT This flag is useful for making bulk changes to a kqueue without draining any pending

events. When passed as input, it forces EV_ERROR to always be returned. When a

filter is successfully added the data field will be zero. Note that if this flag is

encountered and there is no remaining space in eventlist to hold the EV_ERROR

event, then subsequent changes will not get processed.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

EV_ONESHOT Causes the event to return only the first occurrence of the filter being triggered. After

the user retrieves the event from the kqueue, it is deleted.

EV_CLEAR After the event is retrieved by the user, its state is reset. This is useful for filters which

report state transitions instead of the current state. Note that some filters may

automatically set this flag internally.

EV_EOF Filters may set this flag to indicate filter-specific EOF condition.

EV_ERROR See RETURN VALUES below.

EV_KEEPUDATA

Causes kevent() to leave unchanged any udata associated with an existing event. This

allows other aspects of the event to be modified without requiring the caller to know

the udata value presently associated. This is especially useful with NOTE_TRIGGER

or flags like EV_ENABLE. This flag may not be used with EV_ADD.

The predefined system filters are listed below. Arguments may be passed to and from the filter via the

fflags and data fields in the kevent structure.

EVFILT_READ Takes a descriptor as the identifier, and returns whenever there is data

available to read. The behavior of the filter is slightly different depending on

the descriptor type.

Sockets

Sockets which have previously been passed to listen(2) return when there

is an incoming connection pending. data contains the size of the listen

backlog.

Other socket descriptors return when there is data to be read, subject to

the SO_RCVLOWAT value of the socket buffer. This may be

overridden with a per-filter low water mark at the time the filter is added

by setting the NOTE_LOWAT flag in fflags, and specifying the new low

water mark in data. On return, data contains the number of bytes of

protocol data available to read.

If the read direction of the socket has shutdown, then the filter also sets

EV_EOF in flags, and returns the socket error (if any) in fflags. It is

possible for EOF to be returned (indicating the connection is gone) while

there is still data pending in the socket buffer.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

Vnodes

Returns when the file pointer is not at the end of file. data contains the

offset from current position to end of file, and may be negative.

This behavior is different from poll(2), where read events are triggered

for regular files unconditionally. This event can be triggered

unconditionally by setting the NOTE_FILE_POLL flag in fflags.

Fifos, Pipes

Returns when the there is data to read; data contains the number of bytes

available.

When the last writer disconnects, the filter will set EV_EOF in flags.

This will be cleared by the filter when a new writer connects, at which

point the filter will resume waiting for data to become available before

returning.

BPF devices

Returns when the BPF buffer is full, the BPF timeout has expired, or

when the BPF has "immediate mode" enabled and there is any data to

read; data contains the number of bytes available.

Eventfds

Returns when the counter is greater than 0; data contains the counter

value, which must be cast to uint64_t.

Kqueues

Returns when pending events are present on the queue; data contains the

number of events available.

EVFILT_WRITE Takes a descriptor as the identifier, and returns whenever it is possible to

write to the descriptor. For sockets, pipes and fifos, data will contain the

amount of space remaining in the write buffer. The filter will set EV_EOF

when the reader disconnects, and for the fifo case, this will be cleared when

a new reader connects. Note that this filter is not supported for vnodes.

For sockets, the low water mark and socket error handling is identical to the

EVFILT_READ case.

For eventfds, data will contain the maximum value that can be added to the

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

counter without blocking.

For BPF devices, when the descriptor is attached to an interface the filter

always indicates that it is possible to write and data will contain the MTU

size of the underlying interface.

EVFILT_EMPTY Takes a descriptor as the identifier, and returns whenever there is no

remaining data in the write buffer.

EVFILT_AIO Events for this filter are not registered with kevent() directly but are

registered via the aio_sigevent member of an asynchronous I/O request when

it is scheduled via an asynchronous I/O system call such as aio_read(). The

filter returns under the same conditions as aio_error(). For more details on

this filter see sigevent(3) and aio(4).

EVFILT_VNODE Takes a file descriptor as the identifier and the events to watch for in fflags,

and returns when one or more of the requested events occurs on the

descriptor. The events to monitor are:

NOTE_ATTRIB The file referenced by the descriptor had its

attributes changed.

NOTE_CLOSE A file descriptor referencing the monitored

file, was closed. The closed file descriptor did

not have write access.

NOTE_CLOSE_WRITE A file descriptor referencing the monitored

file, was closed. The closed file descriptor had

write access.

This note, as well as NOTE_CLOSE, are not

activated when files are closed forcibly by

unmount(2) or revoke(2). Instead,

NOTE_REVOKE is sent for such events.

NOTE_DELETE The unlink() system call was called on the file

referenced by the descriptor.

NOTE_EXTEND For regular file, the file referenced by the

descriptor was extended.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

For directory, reports that a directory entry was

added or removed, as the result of rename

operation. The NOTE_EXTEND event is not

reported when a name is changed inside the

directory.

NOTE_LINK The link count on the file changed. In

particular, the NOTE_LINK event is reported

if a subdirectory was created or deleted inside

the directory referenced by the descriptor.

NOTE_OPEN The file referenced by the descriptor was

opened.

NOTE_READ A read occurred on the file referenced by the

descriptor.

NOTE_RENAME The file referenced by the descriptor was

renamed.

NOTE_REVOKE Access to the file was revoked via revoke(2) or

the underlying file system was unmounted.

NOTE_WRITE A write occurred on the file referenced by the

descriptor.

On return, fflags contains the events which triggered the filter.

EVFILT_PROC Takes the process ID to monitor as the identifier and the events to watch for

in fflags, and returns when the process performs one or more of the

requested events. If a process can normally see another process, it can attach

an event to it. The events to monitor are:

NOTE_EXIT The process has exited. The exit status will be

stored in data in the same format as the status

returned by wait(2).

NOTE_FORK The process has called fork().

NOTE_EXEC The process has executed a new process via

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

execve(2) or a similar call.

NOTE_TRACK Follow a process across fork() calls. The parent

process registers a new kevent to monitor the child

process using the same fflags as the original event.

The child process will signal an event with

NOTE_CHILD set in fflags and the parent PID in

data.

If the parent process fails to register a new kevent

(usually due to resource limitations), it will signal

an event with NOTE_TRACKERR set in fflags,

and the child process will not signal a

NOTE_CHILD event.

On return, fflags contains the events which triggered the filter.

EVFILT_PROCDESC Takes the process descriptor created by pdfork(2) to monitor as the identifier

and the events to watch for in fflags, and returns when the associated process

performs one or more of the requested events. The events to monitor are:

NOTE_EXIT The process has exited. The exit status will be stored in

data.

On return, fflags contains the events which triggered the filter.

EVFILT_SIGNAL Takes the signal number to monitor as the identifier and returns when the

given signal is delivered to the process. This coexists with the signal() and

sigaction() facilities, and has a lower precedence. The filter will record all

attempts to deliver a signal to a process, even if the signal has been marked

as SIG_IGN, except for the SIGCHLD signal, which, if ignored, will not be

recorded by the filter. Event notification happens after normal signal

delivery processing. data returns the number of times the signal has

occurred since the last call to kevent(). This filter automatically sets the

EV_CLEAR flag internally.

EVFILT_TIMER Establishes an arbitrary timer identified by ident. When adding a timer, data

specifies the moment to fire the timer (for NOTE_ABSTIME) or the timeout

period. The timer will be periodic unless EV_ONESHOT or

NOTE_ABSTIME is specified. On return, data contains the number of

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

times the timeout has expired since the last call to kevent(). For non-

monotonic timers, this filter automatically sets the EV_CLEAR flag

internally.

The filter accepts the following flags in the fflags argument:

NOTE_SECONDS data is in seconds.

NOTE_MSECONDS data is in milliseconds.

NOTE_USECONDS data is in microseconds.

NOTE_NSECONDS data is in nanoseconds.

NOTE_ABSTIME The specified expiration time is absolute.

If fflags is not set, the default is milliseconds. On return, fflags contains the

events which triggered the filter.

Periodic timers with a specified timeout of 0 will be silently adjusted to

timeout after 1 of the time units specified by the requested precision in

fflags. If an absolute time is specified that has already passed, then it is

treated as if the current time were specified and the event will fire as soon as

possible.

If an existing timer is re-added, the existing timer will be effectively

canceled (throwing away any undelivered record of previous timer

expiration) and re-started using the new parameters contained in data and

fflags.

There is a system wide limit on the number of timers which is controlled by

the kern.kq_calloutmax sysctl.

EVFILT_USER Establishes a user event identified by ident which is not associated with any

kernel mechanism but is triggered by user level code. The lower 24 bits of

the fflags may be used for user defined flags and manipulated using the

following:

NOTE_FFNOP Ignore the input fflags.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

NOTE_FFAND Bitwise AND fflags.

NOTE_FFOR Bitwise OR fflags.

NOTE_FFCOPY Copy fflags.

NOTE_FFCTRLMASK Control mask for fflags.

NOTE_FFLAGSMASK User defined flag mask for fflags.

A user event is triggered for output with the following:

NOTE_TRIGGER Cause the event to be triggered.

On return, fflags contains the users defined flags in the lower 24 bits.

CANCELLATION BEHAVIOUR
If nevents is non-zero, i.e., the function is potentially blocking, the call is a cancellation point.

Otherwise, i.e., if nevents is zero, the call is not cancellable. Cancellation can only occur before any

changes are made to the kqueue, or when the call was blocked and no changes to the queue were

requested.

RETURN VALUES
The kqueue() system call creates a new kernel event queue and returns a file descriptor. If there was an

error creating the kernel event queue, a value of -1 is returned and errno set.

The kevent() system call returns the number of events placed in the eventlist, up to the value given by

nevents. If an error occurs while processing an element of the changelist and there is enough room in

the eventlist, then the event will be placed in the eventlist with EV_ERROR set in flags and the system

error in data. Otherwise, -1 will be returned, and errno will be set to indicate the error condition. If the

time limit expires, then kevent() returns 0.

EXAMPLES
#include <sys/event.h>

#include <err.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

int

main(int argc, char **argv)

{

struct kevent event; /* Event we want to monitor */

struct kevent tevent; /* Event triggered */

int kq, fd, ret;

if (argc != 2)

err(EXIT_FAILURE, "Usage: %s path\n", argv[0]);

fd = open(argv[1], O_RDONLY);

if (fd == -1)

err(EXIT_FAILURE, "Failed to open ’%s’", argv[1]);

/* Create kqueue. */

kq = kqueue();

if (kq == -1)

err(EXIT_FAILURE, "kqueue() failed");

/* Initialize kevent structure. */

EV_SET(&event, fd, EVFILT_VNODE, EV_ADD | EV_CLEAR, NOTE_WRITE,

0, NULL);

/* Attach event to the kqueue. */

ret = kevent(kq, &event, 1, NULL, 0, NULL);

if (ret == -1)

err(EXIT_FAILURE, "kevent register");

for (;;) {

/* Sleep until something happens. */

ret = kevent(kq, NULL, 0, &tevent, 1, NULL);

if (ret == -1) {

err(EXIT_FAILURE, "kevent wait");

} else if (ret > 0) {

if (tevent.flags & EV_ERROR)

errx(EXIT_FAILURE, "Event error: %s", strerror(event.data));

else

printf("Something was written in ’%s’\n", argv[1]);

}

}

/* kqueues are destroyed upon close() */

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

(void)close(kq);

(void)close(fd);

}

ERRORS
The kqueue() system call fails if:

[ENOMEM] The kernel failed to allocate enough memory for the kernel queue.

[ENOMEM] The RLIMIT_KQUEUES rlimit (see getrlimit(2)) for the current user would be

exceeded.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

The kevent() system call fails if:

[EACCES] The process does not have permission to register a filter.

[EFAULT] There was an error reading or writing the kevent structure.

[EBADF] The specified descriptor is invalid.

[EINTR] A signal was delivered before the timeout expired and before any events were

placed on the kqueue for return.

[EINTR] A cancellation request was delivered to the thread, but not yet handled.

[EINVAL] The specified time limit or filter is invalid.

[EINVAL] The specified length of the event or change lists is negative.

[ENOENT] The event could not be found to be modified or deleted.

[ENOMEM] No memory was available to register the event or, in the special case of a timer,

the maximum number of timers has been exceeded. This maximum is

configurable via the kern.kq_calloutmax sysctl.

[ESRCH] The specified process to attach to does not exist.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

When kevent() call fails with EINTR error, all changes in the changelist have been applied.

SEE ALSO
aio_error(2), aio_read(2), aio_return(2), poll(2), read(2), select(2), sigaction(2), write(2),

pthread_setcancelstate(3), signal(3)

Jonathan Lemon, "Kqueue: A Generic and Scalable Event Notification Facility", Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference, USENIX Association, June 25-30,

2001.

HISTORY
The kqueue() and kevent() system calls first appeared in FreeBSD 4.1.

AUTHORS
The kqueue() system and this manual page were written by Jonathan Lemon <jlemon@FreeBSD.org>.

BUGS
In versions older than FreeBSD 12.0, <sys/event.h> failed to parse without including <sys/types.h>

manually.

KQUEUE(2) FreeBSD System Calls Manual KQUEUE(2)

FreeBSD 14.0-RELEASE-p11 March 26, 2023 FreeBSD 14.0-RELEASE-p11

