
NAME
ktls - kernel Transport Layer Security

SYNOPSIS
options KERN_TLS

DESCRIPTION
The ktls facility allows the kernel to perform Transport Layer Security (TLS) framing on TCP sockets.

With ktls, the initial handshake for a socket using TLS is performed in userland. Once the session keys

are negotiated, they are provided to the kernel via the TCP_TXTLS_ENABLE and

TCP_RXTLS_ENABLE socket options. Both socket options accept a struct tls_enable structure as their

argument. The members of this structure describe the cipher suite used for the TLS session and provide

the session keys used for the respective direction.

ktls only permits the session keys to be set once in each direction. As a result, applications must disable

rekeying when using ktls.

Modes
ktls can operate in different modes. A given socket may use different modes for transmit and receive, or

a socket may only offload a single direction. The available modes are:

TCP_TLS_MODE_NONE ktls is not enabled.

TCP_TLS_MODE_SW TLS records are encrypted or decrypted in the kernel in the socket layer

via crypto(9). Typically the encryption or decryption is performed in

software, but it may also be performed by co-processors.

TCP_TLS_MODE_IFNET TLS records are encrypted or decrypted by the network interface card

(NIC). In this mode, the network stack does not work with encrypted

data. Instead, the NIC encrypts TLS records as they are being

transmitted, or decrypts received TLS records before providing them to

the host.

Network interfaces which support this feature will advertise the

TXTLS4 (for IPv4) and/or TXTLS6 (for IPv6) capabilities as reported

by ifconfig(8). These capabilities can also be controlled by ifconfig(8).

If a network interface supports rate limiting (also known as packet

pacing) for TLS offload, the interface will advertise the

TXTLS_RTLMT capability.

KTLS(4) FreeBSD Kernel Interfaces Manual KTLS(4)

FreeBSD 14.0-RELEASE-p11 December 14, 2021 FreeBSD 14.0-RELEASE-p11



TCP_TLS_MODE_TOE TLS records are encrypted by the NIC using a TCP offload engine

(TOE). This is similar to TCP_TLS_MODE_IFNET in that the network

stack does not work with encrypted data. However, this mode works in

tandem with a TOE to handle interactions between TCP and TLS.

Transmit
Once TLS transmit is enabled by a successful set of the TCP_TXTLS_ENABLE socket option, all data

written on the socket is stored in TLS records and encrypted. Most data is transmitted in application

layer TLS records, and the kernel chooses how to partition data among TLS records. Individual TLS

records with a fixed length and record type can be sent by sendmsg(2) with the TLS record type set in a

TLS_SET_RECORD_TYPE control message. The payload of this control message is a single byte

holding the desired TLS record type. This can be used to send TLS records with a type other than

application data (for example, handshake messages) or to send application data records with specific

contents (for example, empty fragments).

The current TLS transmit mode of a socket can be queried via the TCP_TXTLS_MODE socket option.

A socket using TLS transmit offload can also set the TCP_TXTLS_MODE socket option to toggle

between TCP_TLS_MODE_SW and TCP_TLS_MODE_IFNET.

Receive
Once TLS receive is enabled by a successful set of the TCP_RXTLS_ENABLE socket option, all data

read from the socket is returned as decrypted TLS records. Each received TLS record must be read from

the socket using recvmsg(2). Each received TLS record will contain a TLS_GET_RECORD control

message along with the decrypted payload. The control message contains a struct tls_get_record which

includes fields from the TLS record header. If an invalid or corrupted TLS record is received,

recvmsg(2) will fail with one of the following errors:

[EINVAL] The version fields in a TLS record’s header did not match the version required by

the struct tls_enable structure used to enable in-kernel TLS.

[EMSGSIZE] A TLS record’s length was either too small or too large.

[EMSGSIZE] The connection was closed after sending a truncated TLS record.

[EBADMSG] The TLS record failed to match the included authentication tag.

The current TLS receive mode of a socket can be queried via the TCP_RXTLS_MODE socket option.

At present, the mode cannot be changed.

Sysctl Nodes

KTLS(4) FreeBSD Kernel Interfaces Manual KTLS(4)

FreeBSD 14.0-RELEASE-p11 December 14, 2021 FreeBSD 14.0-RELEASE-p11



ktls uses several sysctl nodes under the kern.ipc.tls node. A few of them are described below:

kern.ipc.tls.enable Determines if new kernel TLS sessions can be created.

kern.ipc.tls.cbc_enable Determines if new kernel TLS sessions with a cipher suite using AES-CBC can

be created.

kern.ipc.tls.sw A tree of nodes containing statistics for TLS sessions using

TCP_TLS_MODE_SW.

kern.ipc.tls.ifnet A tree of nodes containing statistics for TLS sessions using

TCP_TLS_MODE_IFNET.

kern.ipc.tls.toe A tree of nodes containing statistics for TLS sessions using

TCP_TLS_MODE_TOE.

kern.ipc.tls.stats A tree of nodes containing various kernel TLS statistics.

The kern.ipc.mb_use_ext_pgs sysctl controls whether the kernel may use unmapped mbufs. They are

required for TLS transmit.

Supported Hardware
The cxgbe(4) and mlx5en(4) drivers include support for the TCP_TLS_MODE_IFNET mode.

The cxgbe(4) driver includes support for the TCP_TLS_MODE_TOE mode.

Supported Libraries
OpenSSL 3.0 and later include support for ktls. The security/openssl-devel port may also be built with

support for ktls by enabling the KTLS option. OpenSSL in the base system includes KTLS support

when built with WITH_OPENSSL_KTLS.

Applications using a supported library should generally work with ktls without any changes provided

they use standard interfaces such as SSL_read(3) and SSL_write(3). Additional performance may be

gained by the use of SSL_sendfile(3).

IMPLEMENTATION NOTES
ktls assumes the presence of a direct map of physical memory when performing software encryption and

decryption. As a result, it is only supported on architectures with a direct map.

SEE ALSO

KTLS(4) FreeBSD Kernel Interfaces Manual KTLS(4)

FreeBSD 14.0-RELEASE-p11 December 14, 2021 FreeBSD 14.0-RELEASE-p11



cxgbe(4), mlx5en(4), tcp(4), src.conf(5), ifconfig(8), sysctl(8), crypto(9)

HISTORY
Kernel TLS first appeared in FreeBSD 13.0.

KTLS(4) FreeBSD Kernel Interfaces Manual KTLS(4)

FreeBSD 14.0-RELEASE-p11 December 14, 2021 FreeBSD 14.0-RELEASE-p11


