
NAME
libcurl-thread - libcurl thread safety

Multi-threading with libcurl
libcurl is thread safe but has no internal thread synchronization. You may have to provide your own

locking should you meet any of the thread safety exceptions below.

Handles
You must never share the same handle in multiple threads. You can pass the handles around among

threads, but you must never use a single handle from more than one thread at any given time.

Shared objects
You can share certain data between multiple handles by using the share interface but you must provide

your own locking and set curl_share_setopt(3) CURLSHOPT_LOCKFUNC and

CURLSHOPT_UNLOCKFUNC.

Note that some items are specifically documented as not thread-safe in the share API (the connection

pool and HSTS cache for example).

TLS
All current TLS libraries libcurl supports are thread-safe. OpenSSL 1.1.0+ can be safely used in multi-

threaded applications provided that support for the underlying OS threading API is built-in. For older

versions of OpenSSL, the user must set mutex callbacks.

Signals
Signals are used for timing out name resolves (during DNS lookup) - when built without using either

the c-ares or threaded resolver backends. On systems that have a signal concept.

When using multiple threads you should set the CURLOPT_NOSIGNAL(3) option to 1L for all

handles. Everything works fine except that timeouts cannot be honored during DNS lookups - which

you can work around by building libcurl with c-ares or threaded-resolver support. c-ares is a library

that provides asynchronous name resolves. On some platforms, libcurl simply cannot function properly

multi-threaded unless the CURLOPT_NOSIGNAL(3) option is set.

When CURLOPT_NOSIGNAL(3) is set to 1L, your application needs to deal with the risk of a

SIGPIPE (that at least the OpenSSL backend can trigger). Note that setting

CURLOPT_NOSIGNAL(3) to 0L does not work in a threaded situation as there is a race condition

where libcurl risks restoring the former signal handler while another thread should still ignore it.

libcurl-thread(3) libcurl libcurl-thread(3)

libcurl 8.5.0 October 30, 2023 libcurl-thread(3)



Name resolving
The gethostbyname or getaddrinfo and other name resolving system calls used by libcurl are provided

by your operating system and must be thread safe. It is important that libcurl can find and use thread

safe versions of these and other system calls, as otherwise it cannot function fully thread safe. Some

operating systems are known to have faulty thread implementations. We have previously received

problem reports on *BSD (at least in the past, they may be working fine these days). Some operating

systems that are known to have solid and working thread support are Linux, Solaris and Windows.

curl_global_* functions
These functions are thread-safe since libcurl 7.84.0 if curl_version_info(3) has the

CURL_VERSION_THREADSAFE feature bit set (most platforms).

If these functions are not thread-safe and you are using libcurl with multiple threads it is especially

important that before use you call curl_global_init(3) or curl_global_init_mem(3) to explicitly initialize

the library and its dependents, rather than rely on the "lazy" fail-safe initialization that takes place the

first time curl_easy_init(3) is called. For an in-depth explanation refer to libcurl(3) section GLOBAL
CONSTANTS.

Memory functions
These functions, provided either by your operating system or your own replacements, must be thread

safe. You can use curl_global_init_mem(3) to set your own replacement memory functions.

Non-safe functions
CURLOPT_DNS_USE_GLOBAL_CACHE(3) is not thread-safe.

curl_version_info(3) is not thread-safe before libcurl initialization.

libcurl-thread(3) libcurl libcurl-thread(3)

libcurl 8.5.0 October 30, 2023 libcurl-thread(3)


