
NAME
magic - file command’s magic pattern file

DESCRIPTION
This manual page documents the format of magic files as used by the file(1) command, version "5.43".

The file(1) command identifies the type of a file using, among other tests, a test for whether the file

contains certain "magic patterns". The database of these "magic patterns" is usually located in a binary

file in /usr/share/misc/magic.mgc or a directory of source text magic pattern fragment files in

/usr/share/misc/magic. The database specifies what patterns are to be tested for, what message or MIME

type to print if a particular pattern is found, and additional information to extract from the file.

The format of the source fragment files that are used to build this database is as follows: Each line of a

fragment file specifies a test to be performed. A test compares the data starting at a particular offset in

the file with a byte value, a string or a numeric value. If the test succeeds, a message is printed. The

line consists of the following fields:

offset A number specifying the offset (in bytes) into the file of the data which is to be tested. This

offset can be a negative number if it is:

+o The first direct offset of the magic entry (at continuation level 0), in which case it is

interpreted an offset from end end of the file going backwards. This works only when a

file descriptor to the file is available and it is a regular file.

+o A continuation offset relative to the end of the last up-level field (&).

type The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value in this machine’s native byte order.

long A four-byte value in this machine’s native byte order.

quad An eight-byte value in this machine’s native byte order.

float A 32-bit single precision IEEE floating point number in this machine’s native byte

order.

double A 64-bit double precision IEEE floating point number in this machine’s native byte

order.

string A string of bytes. The string type specification can be optionally followed by

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

/[WwcCtbTf]*. The "W" flag compacts whitespace in the target, which must

contain at least one whitespace character. If the magic has n consecutive blanks,

the target needs at least n consecutive blanks to match. The "w" flag treats every

blank in the magic as an optional blank. The "f" flags requires that the matched

string is a full word, not a partial word match. The "c" flag specifies case

insensitive matching: lower case characters in the magic match both lower and

upper case characters in the target, whereas upper case characters in the magic only

match upper case characters in the target. The "C" flag specifies case insensitive

matching: upper case characters in the magic match both lower and upper case

characters in the target, whereas lower case characters in the magic only match

upper case characters in the target. To do a complete case insensitive match,

specify both "c" and "C". The "t" flag forces the test to be done for text files, while

the "b" flag forces the test to be done for binary files. The "T" flag causes the string

to be trimmed, i.e. leading and trailing whitespace is deleted before the string is

printed.

pstring A Pascal-style string where the first byte/short/int is interpreted as the unsigned

length. The length defaults to byte and can be specified as a modifier. The

following modifiers are supported:

B A byte length (default).

H

A 2 byte big endian length.

h A 2 byte little endian length.

L A 4 byte big endian length.

l A 4 byte little endian length.

J The length includes itself in its count.

The string is not NUL terminated. "J" is used rather than the more valuable "I"

because this type of length is a feature of the JPEG format.

date A four-byte value interpreted as a UNIX date.

qdate An eight-byte value interpreted as a UNIX date.

ldate A four-byte value interpreted as a UNIX-style date, but interpreted as local time

rather than UTC.

qldate An eight-byte value interpreted as a UNIX-style date, but interpreted as local time

rather than UTC.

qwdate An eight-byte value interpreted as a Windows-style date.

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

beid3 A 32-bit ID3 length in big-endian byte order.

beshort A two-byte value in big-endian byte order.

belong A four-byte value in big-endian byte order.

bequad An eight-byte value in big-endian byte order.

befloat A 32-bit single precision IEEE floating point number in big-endian byte order.

bedouble A 64-bit double precision IEEE floating point number in big-endian byte order.

bedate A four-byte value in big-endian byte order, interpreted as a Unix date.

beqdate An eight-byte value in big-endian byte order, interpreted as a Unix date.

beldate A four-byte value in big-endian byte order, interpreted as a UNIX-style date, but

interpreted as local time rather than UTC.

beqldate An eight-byte value in big-endian byte order, interpreted as a UNIX-style date, but

interpreted as local time rather than UTC.

beqwdate An eight-byte value in big-endian byte order, interpreted as a Windows-style date.

bestring16

A two-byte unicode (UCS16) string in big-endian byte order.

leid3 A 32-bit ID3 length in little-endian byte order.

leshort A two-byte value in little-endian byte order.

lelong A four-byte value in little-endian byte order.

lequad An eight-byte value in little-endian byte order.

lefloat A 32-bit single precision IEEE floating point number in little-endian byte order.

ledouble A 64-bit double precision IEEE floating point number in little-endian byte order.

ledate A four-byte value in little-endian byte order, interpreted as a UNIX date.

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

leqdate An eight-byte value in little-endian byte order, interpreted as a UNIX date.

leldate A four-byte value in little-endian byte order, interpreted as a UNIX-style date, but

interpreted as local time rather than UTC.

leqldate An eight-byte value in little-endian byte order, interpreted as a UNIX-style date,

but interpreted as local time rather than UTC.

leqwdate An eight-byte value in little-endian byte order, interpreted as a Windows-style date.

lestring16 A two-byte unicode (UCS16) string in little-endian byte order.

melong A four-byte value in middle-endian (PDP-11) byte order.

medate A four-byte value in middle-endian (PDP-11) byte order, interpreted as a UNIX

date.

meldate A four-byte value in middle-endian (PDP-11) byte order, interpreted as a UNIX-

style date, but interpreted as local time rather than UTC.

indirect Starting at the given offset, consult the magic database again. The offset of the

indirect magic is by default absolute in the file, but one can specify /r to indicate

that the offset is relative from the beginning of the entry.

name Define a "named" magic instance that can be called from another use magic entry,

like a subroutine call. Named instance direct magic offsets are relative to the offset

of the previous matched entry, but indirect offsets are relative to the beginning of

the file as usual. Named magic entries always match.

use Recursively call the named magic starting from the current offset. If the name of

the referenced begins with a ^ then the endianness of the magic is switched; if the

magic mentioned leshort for example, it is treated as beshort and vice versa. This is

useful to avoid duplicating the rules for different endianness.

regex A regular expression match in extended POSIX regular expression syntax (like

egrep). Regular expressions can take exponential time to process, and their

performance is hard to predict, so their use is discouraged. When used in

production environments, their performance should be carefully checked. The size

of the string to search should also be limited by specifying /<length>, to avoid

performance issues scanning long files. The type specification can also be

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

optionally followed by /[c][s][l]. The "c" flag makes the match case insensitive,

while the "s" flag update the offset to the start offset of the match, rather than the

end. The "l" modifier, changes the limit of length to mean number of lines instead

of a byte count. Lines are delimited by the platforms native line delimiter. When a

line count is specified, an implicit byte count also computed assuming each line is

80 characters long. If neither a byte or line count is specified, the search is limited

automatically to 8KiB. ^ and $ match the beginning and end of individual lines,

respectively, not beginning and end of file.

search A literal string search starting at the given offset. The same modifier flags can be

used as for string patterns. The search expression must contain the range in the

form /number, that is the number of positions at which the match will be attempted,

starting from the start offset. This is suitable for searching larger binary

expressions with variable offsets, using \ escapes for special characters. The order

of modifier and number is not relevant.

default This is intended to be used with the test x (which is always true) and it has no type.

It matches when no other test at that continuation level has matched before.

Clearing that matched tests for a continuation level, can be done using the clear

test.

clear This test is always true and clears the match flag for that continuation level. It is

intended to be used with the default test.

der Parse the file as a DER Certificate file. The test field is used as a der type that

needs to be matched. The DER types are: eoc, bool, int, bit_str, octet_str, null,

obj_id, obj_desc, ext, real, enum, embed, utf8_str, rel_oid, time, res2, seq, set,

num_str, prt_str, t61_str, vid_str, ia5_str, utc_time, gen_time, gr_str, vis_str,

gen_str, univ_str, char_str, bmp_str, date, tod, datetime, duration, oid-iri, rel-oid-iri.

These types can be followed by an optional numeric size, which indicates the field

width in bytes.

guid A Globally Unique Identifier, parsed and printed as XXXXXXXX-XXXX-XXXX-

XXXX-XXXXXXXXXXXX. It’s format is a string.

offset This is a quad value indicating the current offset of the file. It can be used to

determine the size of the file or the magic buffer. For example the magic entries:

-0 offset x this file is %lld bytes

-0 offset <=100 must be more than 100 \

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

bytes and is only %lld

octal A string representing an octal number.

For compatibility with the Single UNIX Standard, the type specifiers dC and d1 are equivalent to byte,

the type specifiers uC and u1 are equivalent to ubyte, the type specifiers dS and d2 are equivalent to

short, the type specifiers uS and u2 are equivalent to ushort, the type specifiers dI, dL, and d4 are

equivalent to long, the type specifiers uI, uL, and u4 are equivalent to ulong, the type specifier d8 is

equivalent to quad, the type specifier u8 is equivalent to uquad, and the type specifier s is equivalent to

string. In addition, the type specifier dQ is equivalent to quad and the type specifier uQ is equivalent to

uquad.

Each top-level magic pattern (see below for an explanation of levels) is classified as text or binary

according to the types used. Types "regex" and "search" are classified as text tests, unless non-printable

characters are used in the pattern. All other tests are classified as binary. A top-level pattern is

considered to be a test text when all its patterns are text patterns; otherwise, it is considered to be a

binary pattern. When matching a file, binary patterns are tried first; if no match is found, and the file

looks like text, then its encoding is determined and the text patterns are tried.

The numeric types may optionally be followed by & and a numeric value, to specify that the value is to

be AND’ed with the numeric value before any comparisons are done. Prepending a u to the type

indicates that ordered comparisons should be unsigned.

The value to be compared with the value from the file. If the type is numeric, this value is specified in C

form; if it is a string, it is specified as a C string with the usual escapes permitted (e.g. \n for new-line).

Numeric values may be preceded by a character indicating the operation to be performed. It may be =,

to specify that the value from the file must equal the specified value, <, to specify that the value from the

file must be less than the specified value, >, to specify that the value from the file must be greater than

the specified value, &, to specify that the value from the file must have set all of the bits that are set in

the specified value, ^, to specify that the value from the file must have clear any of the bits that are set in

the specified value, or ~, the value specified after is negated before tested. x, to specify that any value

will match. If the character is omitted, it is assumed to be =. Operators &, ^, and ~ don’t work with

floats and doubles. The operator ! specifies that the line matches if the test does not succeed.

Numeric values are specified in C form; e.g. 13 is decimal, 013 is octal, and 0x13 is hexadecimal.

Numeric operations are not performed on date types, instead the numeric value is interpreted as an

offset.

For string values, the string from the file must match the specified string. The operators =, < and > (but

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

not &) can be applied to strings. The length used for matching is that of the string argument in the

magic file. This means that a line can match any non-empty string (usually used to then print the string),

with >\0 (because all non-empty strings are greater than the empty string).

Dates are treated as numerical values in the respective internal representation.

The special test x always evaluates to true.

The message to be printed if the comparison succeeds. If the string contains a printf(3) format

specification, the value from the file (with any specified masking performed) is printed using the

message as the format string. If the string begins with "\b", the message printed is the remainder of the

string with no whitespace added before it: multiple matches are normally separated by a single space.

An APPLE 4+4 character APPLE creator and type can be specified as:

!:apple CREATYPE

A MIME type is given on a separate line, which must be the next non-blank or comment line after the

magic line that identifies the file type, and has the following format:

!:mime MIMETYPE

i.e. the literal string "!:mime" followed by the MIME type.

An optional strength can be supplied on a separate line which refers to the current magic description

using the following format:

!:strength OP VALUE

The operand OP can be: +, -, *, or / and VALUE is a constant between 0 and 255. This constant is

applied using the specified operand to the currently computed default magic strength.

Some file formats contain additional information which is to be printed along with the file type or need

additional tests to determine the true file type. These additional tests are introduced by one or more >

characters preceding the offset. The number of > on the line indicates the level of the test; a line with no

> at the beginning is considered to be at level 0. Tests are arranged in a tree-like hierarchy: if the test on

a line at level n succeeds, all following tests at level n+1 are performed, and the messages printed if the

tests succeed, until a line with level n (or less) appears. For more complex files, one can use empty

messages to get just the "if/then" effect, in the following way:

0 string MZ

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

>0x18 leshort <0x40 MS-DOS executable

>0x18 leshort >0x3f extended PC executable (e.g., MS Windows)

Offsets do not need to be constant, but can also be read from the file being examined. If the first

character following the last > is a (then the string after the parenthesis is interpreted as an indirect

offset. That means that the number after the parenthesis is used as an offset in the file. The value at that

offset is read, and is used again as an offset in the file. Indirect offsets are of the form: ((x

[[.,][bBcCeEfFgGhHiIlmsSqQ]][+-][y]). The value of x is used as an offset in the file. A byte, id3

length, short or long is read at that offset depending on the [bBcCeEfFgGhHiIlmsSqQ] type specifier.

The value is treated as signed if "", is specified or unsigned if "". is specified. The capitalized types

interpret the number as a big endian value, whereas the small letter versions interpret the number as a

little endian value; the m type interprets the number as a middle endian (PDP-11) value. To that number

the value of y is added and the result is used as an offset in the file. The default type if one is not

specified is long. The following types are recognized:

Type Sy Mnemonic

Sy Endian

Sy Size

bcBc Byte/Char N/A 1

efg Double Little 8

EFG Double Big 8

hs Half/Short Little 2

HS Half/Short Big 2

i ID3 Little 4

I ID3 Big 4

m Middle Middle 4

o Octal Textual

Variable

q Quad Little 8

Q Quad Big 8

That way variable length structures can be examined:

MS Windows executables are also valid MS-DOS executables

0 string MZ

>0x18 leshort <0x40 MZ executable (MS-DOS)

skip the whole block below if it is not an extended executable

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

>>(0x3c.l) string LX\0\0 LX executable (OS/2)

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

This strategy of examining has a drawback: you must make sure that you eventually print something, or

users may get empty output (such as when there is neither PE\0\0 nor LE\0\0 in the above example).

If this indirect offset cannot be used directly, simple calculations are possible: appending

[+-*/%&|^]number inside parentheses allows one to modify the value read from the file before it is used

as an offset:

MS Windows executables are also valid MS-DOS executables

0 string MZ

sometimes, the value at 0x18 is less that 0x40 but there’s still an

extended executable, simply appended to the file

>0x18 leshort <0x40

>>(4.s*512) leshort 0x014c COFF executable (MS-DOS, DJGPP)

>>(4.s*512) leshort !0x014c MZ executable (MS-DOS)

Sometimes you do not know the exact offset as this depends on the length or position (when indirection

was used before) of preceding fields. You can specify an offset relative to the end of the last up-level

field using ‘&’ as a prefix to the offset:

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

immediately following the PE signature is the CPU type

>>>&0 leshort 0x14c for Intel 80386

>>>&0 leshort 0x184 for DEC Alpha

Indirect and relative offsets can be combined:

0 string MZ

>0x18 leshort <0x40

>>(4.s*512) leshort !0x014c MZ executable (MS-DOS)

if it’s not COFF, go back 512 bytes and add the offset taken

from byte 2/3, which is yet another way of finding the start

of the extended executable

>>>&(2.s-514) string LE LE executable (MS Windows VxD driver)

Or the other way around:

0 string MZ

>0x18 leshort >0x3f

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

>>(0x3c.l) string LE\0\0 LE executable (MS-Windows)

at offset 0x80 (-4, since relative offsets start at the end

of the up-level match) inside the LE header, we find the absolute

offset to the code area, where we look for a specific signature

>>>(&0x7c.l+0x26) string UPX \b, UPX compressed

Or even both!

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string LE\0\0 LE executable (MS-Windows)

at offset 0x58 inside the LE header, we find the relative offset

to a data area where we look for a specific signature

>>>&(&0x54.l-3) string UNACE \b, ACE self-extracting archive

If you have to deal with offset/length pairs in your file, even the second value in a parenthesized

expression can be taken from the file itself, using another set of parentheses. Note that this additional

indirect offset is always relative to the start of the main indirect offset.

0 string MZ

>0x18 leshort >0x3f

>>(0x3c.l) string PE\0\0 PE executable (MS-Windows)

search for the PE section called ".idata"...

>>>&0xf4 search/0x140 .idata

...and go to the end of it, calculated from start+length;

these are located 14 and 10 bytes after the section name

>>>>(&0xe.l+(-4)) string PK\3\4 \b, ZIP self-extracting archive

If you have a list of known values at a particular continuation level, and you want to provide a switch-

like default case:

clear that continuation level match

>18 clear

>18 lelong 1 one

>18 lelong 2 two

>18 default x

print default match

>>18 lelong x unmatched 0x%x

SEE ALSO

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

file(1) - the command that reads this file.

BUGS
The formats long, belong, lelong, melong, short, beshort, and leshort do not depend on the length of the

C data types short and long on the platform, even though the Single UNIX Specification implies that

they do. However, as OS X Mountain Lion has passed the Single UNIX Specification validation suite,

and supplies a version of file(1) in which they do not depend on the sizes of the C data types and that is

built for a 64-bit environment in which long is 8 bytes rather than 4 bytes, presumably the validation

suite does not test whether, for example long refers to an item with the same size as the C data type long.

There should probably be type names int8, uint8, int16, uint16, int32, uint32, int64, and uint64, and

specified-byte-order variants of them, to make it clearer that those types have specified widths.

MAGIC(5) FreeBSD File Formats Manual MAGIC(5)

FreeBSD 14.0-RELEASE-p11 September 10, 2022 FreeBSD 14.0-RELEASE-p11

