
NAME
make - maintain program dependencies

SYNOPSIS
make [-BeikNnqrSstWwX] [-C directory] [-D variable] [-d flags] [-f makefile] [-I directory] [-J private]

[-j max_jobs] [-m directory] [-T file] [-V variable] [-v variable] [variable=value] [target ...]

DESCRIPTION
make is a program designed to simplify the maintenance of other programs. Its input is a list of

specifications as to the files upon which programs and other files depend. If no -f makefile option is

given, make tries to open ‘makefile’ then ‘Makefile’ in order to find the specifications. If the file

‘.depend’ exists, it is read, see mkdep(1).

This manual page is intended as a reference document only. For a more thorough description of make
and makefiles, please refer to PMake - A Tutorial (from 1993).

make prepends the contents of the MAKEFLAGS environment variable to the command line arguments

before parsing them.

The options are as follows:

-B Try to be backwards compatible by executing a single shell per command and by making the

sources of a dependency line in sequence.

-C directory

Change to directory before reading the makefiles or doing anything else. If multiple -C options

are specified, each is interpreted relative to the previous one: -C / -C etc is equivalent to -C /etc.

-D variable

Define variable to be 1, in the global scope.

-d [-]flags

Turn on debugging, and specify which portions of make are to print debugging information.

Unless the flags are preceded by ‘-’, they are added to the MAKEFLAGS environment variable

and are passed on to any child make processes. By default, debugging information is printed to

standard error, but this can be changed using the F debugging flag. The debugging output is

always unbuffered; in addition, if debugging is enabled but debugging output is not directed to

standard output, the standard output is line buffered. The available flags are:

A Print all possible debugging information; equivalent to specifying all of the debugging

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

flags.

a Print debugging information about archive searching and caching.

C Print debugging information about the current working directory.

c Print debugging information about conditional evaluation.

d Print debugging information about directory searching and caching.

e Print debugging information about failed commands and targets.

F[+]filename

Specify where debugging output is written. This must be the last flag, because it

consumes the remainder of the argument. If the character immediately after the F flag

is ‘+’, the file is opened in append mode; otherwise the file is overwritten. If the file

name is ‘stdout’ or ‘stderr’, debugging output is written to the standard output or

standard error output respectively (and the ‘+’ option has no effect). Otherwise, the

output is written to the named file. If the file name ends with ‘.%d’, the ‘%d’ is

replaced by the pid.

f Print debugging information about loop evaluation.

g1 Print the input graph before making anything.

g2 Print the input graph after making everything, or before exiting on error.

g3 Print the input graph before exiting on error.

h Print debugging information about hash table operations.

j Print debugging information about running multiple shells.

L Turn on lint checks. This throws errors for variable assignments that do not parse

correctly, at the time of assignment, so the file and line number are available.

l Print commands in Makefiles regardless of whether or not they are prefixed by ‘@’ or

other "quiet" flags. Also known as "loud" behavior.

M Print debugging information about "meta" mode decisions about targets.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

m Print debugging information about making targets, including modification dates.

n Don’t delete the temporary command scripts created when running commands. These

temporary scripts are created in the directory referred to by the TMPDIR environment

variable, or in /tmp if TMPDIR is unset or set to the empty string. The temporary

scripts are created by mkstemp(3), and have names of the form makeXXXXXX.

NOTE: This can create many files in TMPDIR or /tmp, so use with care.

p Print debugging information about makefile parsing.

s Print debugging information about suffix-transformation rules.

t Print debugging information about target list maintenance.

V Force the -V option to print raw values of variables, overriding the default behavior set

via .MAKE.EXPAND_VARIABLES.

v Print debugging information about variable assignment and expansion.

x Run shell commands with -x so the actual commands are printed as they are executed.

-e Let environment variables override global variables within makefiles.

-f makefile

Specify a makefile to read instead of the default makefile or Makefile. If makefile is ‘-’,

standard input is read. Multiple makefiles may be specified, and are read in the order specified.

-I directory

Specify a directory in which to search for makefiles and included makefiles. The system

makefile directory (or directories, see the -m option) is automatically included as part of this

list.

-i Ignore non-zero exit of shell commands in the makefile. Equivalent to specifying ‘-’ before

each command line in the makefile.

-J private

This option should not be specified by the user.

When the -j option is in use in a recursive build, this option is passed by a make to child makes

to allow all the make processes in the build to cooperate to avoid overloading the system.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

-j max_jobs

Specify the maximum number of jobs that make may have running at any one time. The value

of max_jobs is saved in .MAKE.JOBS. Turns compatibility mode off, unless the -B option is

also specified. When compatibility mode is off, all commands associated with a target are

executed in a single shell invocation as opposed to the traditional one shell invocation per line.

This can break traditional scripts which change directories on each command invocation and

then expect to start with a fresh environment on the next line. It is more efficient to correct the

scripts rather than turn backwards compatibility on.

A job token pool with max_jobs tokens is used to control the total number of jobs running.

Each instance of make will wait for a token from the pool before running a new job.

-k Continue processing after errors are encountered, but only on those targets that do not depend

on the target whose creation caused the error.

-m directory

Specify a directory in which to search for sys.mk and makefiles included via the <file>-style

include statement. The -m option can be used multiple times to form a search path. This path

overrides the default system include path /usr/share/mk. Furthermore, the system include path

is appended to the search path used for "file"-style include statements (see the -I option). The

system include path can be referenced via the read-only variable .SYSPATH.

If a directory name in the -m argument (or the MAKESYSPATH environment variable) starts

with the string ‘.../’, make searches for the specified file or directory named in the remaining

part of the argument string. The search starts with the current directory and then works upward

towards the root of the file system. If the search is successful, the resulting directory replaces

the ‘.../’ specification in the -m argument. This feature allows make to easily search in the

current source tree for customized sys.mk files (e.g., by using ‘.../mk/sys.mk’ as an argument).

-n Display the commands that would have been executed, but do not actually execute them unless

the target depends on the .MAKE special source (see below) or the command is prefixed with

‘+’.

-N Display the commands that would have been executed, but do not actually execute any of them;

useful for debugging top-level makefiles without descending into subdirectories.

-q Do not execute any commands, instead exit 0 if the specified targets are up to date, and 1

otherwise.

-r Do not use the built-in rules specified in the system makefile.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

-S Stop processing if an error is encountered. This is the default behavior and the opposite of -k.

-s Do not echo any commands as they are executed. Equivalent to specifying ‘@’ before each

command line in the makefile.

-T tracefile

When used with the -j flag, append a trace record to tracefile for each job started and

completed.

-t Rather than re-building a target as specified in the makefile, create it or update its modification

time to make it appear up-to-date.

-V variable

Print the value of variable. Do not build any targets. Multiple instances of this option may be

specified; the variables are printed one per line, with a blank line for each null or undefined

variable. The value printed is extracted from the global scope after all makefiles have been

read.

By default, the raw variable contents (which may include additional unexpanded variable

references) are shown. If variable contains a ‘$’, it is not interpreted as a variable name but

rather as an expression. Its value is expanded before printing. The value is also expanded

before printing if .MAKE.EXPAND_VARIABLES is set to true and the -dV option has not

been used to override it.

Note that loop-local and target-local variables, as well as values taken temporarily by global

variables during makefile processing, are not accessible via this option. The -dv debug mode

can be used to see these at the cost of generating substantial extraneous output.

-v variable

Like -V, but all printed variables are always expanded to their complete value. The last

occurrence of -V or -v decides whether all variables are expanded or not.

-W Treat any warnings during makefile parsing as errors.

-w Print entering and leaving directory messages, pre and post processing.

-X Don’t export variables passed on the command line to the environment individually. Variables

passed on the command line are still exported via the MAKEFLAGS environment variable.

This option may be useful on systems which have a small limit on the size of command

arguments.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

variable=value

Set the value of the variable variable to value. Normally, all values passed on the command

line are also exported to sub-makes in the environment. The -X flag disables this behavior.

Variable assignments should follow options for POSIX compatibility but no ordering is

enforced.

There are several different types of lines in a makefile: dependency specifications, shell commands,

variable assignments, include statements, conditional directives, for loops, other directives, and

comments.

Lines may be continued from one line to the next by ending them with a backslash (‘\’). The trailing

newline character and initial whitespace on the following line are compressed into a single space.

FILE DEPENDENCY SPECIFICATIONS
Dependency lines consist of one or more targets, an operator, and zero or more sources. This creates a

relationship where the targets "depend" on the sources and are customarily created from them. A target

is considered out of date if it does not exist, or if its modification time is less than that of any of its

sources. An out-of-date target is re-created, but not until all sources have been examined and

themselves re-created as needed. Three operators may be used:

: Many dependency lines may name this target but only one may have attached shell commands. All

sources named in all dependency lines are considered together, and if needed the attached shell

commands are run to create or re-create the target. If make is interrupted, the target is removed.

! The same, but the target is always re-created whether or not it is out of date.

:: Any dependency line may have attached shell commands, but each one is handled independently:

its sources are considered and the attached shell commands are run if the target is out of date with

respect to (only) those sources. Thus, different groups of the attached shell commands may be run

depending on the circumstances. Furthermore, unlike :, for dependency lines with no sources, the

attached shell commands are always run. Also unlike :, the target is not removed if make is

interrupted.

All dependency lines mentioning a particular target must use the same operator.

Targets and sources may contain the shell wildcard values ‘?’, ‘*’, ‘[]’, and ‘{}’. The values ‘?’, ‘*’, and

‘[]’ may only be used as part of the final component of the target or source, and only match existing

files. The value ‘{}’ need not necessarily be used to describe existing files. Expansion is in directory

order, not alphabetically as done in the shell.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

SHELL COMMANDS
Each target may have associated with it one or more lines of shell commands, normally used to create

the target. Each of the lines in this script must be preceded by a tab. (For historical reasons, spaces are

not accepted.) While targets can occur in many dependency lines if desired, by default only one of these

rules may be followed by a creation script. If the ‘::’ operator is used, however, all rules may include

scripts, and the respective scripts are executed in the order found.

Each line is treated as a separate shell command, unless the end of line is escaped with a backslash ‘\’, in

which case that line and the next are combined. If the first characters of the command are any

combination of ‘@’, ‘+’, or ‘-’, the command is treated specially.

@ causes the command not to be echoed before it is executed.

+ causes the command to be executed even when -n is given. This is similar to the effect of

the .MAKE special source, except that the effect can be limited to a single line of a script.

- in compatibility mode causes any non-zero exit status of the command line to be ignored.

When make is run in jobs mode with -j max_jobs, the entire script for the target is fed to a single

instance of the shell. In compatibility (non-jobs) mode, each command is run in a separate process. If

the command contains any shell meta characters (‘#=|^(){};&<>*?[]:$‘\\n’), it is passed to the shell;

otherwise make attempts direct execution. If a line starts with ‘-’ and the shell has ErrCtl enabled,

failure of the command line is ignored as in compatibility mode. Otherwise ‘-’ affects the entire job; the

script stops at the first command line that fails, but the target is not deemed to have failed.

Makefiles should be written so that the mode of make operation does not change their behavior. For

example, any command which uses "cd" or "chdir" without the intention of changing the directory for

subsequent commands should be put in parentheses so it executes in a subshell. To force the use of a

single shell, escape the line breaks so as to make the whole script one command. For example:

avoid-chdir-side-effects:

@echo "Building $@ in $$(pwd)"

@(cd ${.CURDIR} && ${MAKE} $@)

@echo "Back in $$(pwd)"

ensure-one-shell-regardless-of-mode:

@echo "Building $@ in $$(pwd)"; \

(cd ${.CURDIR} && ${MAKE} $@); \

echo "Back in $$(pwd)"

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

Since make changes the current working directory to ‘.OBJDIR’ before executing any targets, each child

process starts with that as its current working directory.

VARIABLE ASSIGNMENTS
Variables in make behave much like macros in the C preprocessor.

Variable assignments have the form ‘NAME op value’, where:

NAME is a single-word variable name, consisting, by tradition, of all upper-case letters,

op is one of the variable assignment operators described below, and

value is interpreted according to the variable assignment operator.

Whitespace around NAME, op and value is discarded.

Variable assignment operators
The five operators that assign values to variables are:

= Assign the value to the variable. Any previous value is overwritten.

+= Append the value to the current value of the variable, separating them by a single space.

?= Assign the value to the variable if it is not already defined.

:= Expand the value, then assign it to the variable.

NOTE: References to undefined variables are not expanded. This can cause problems when

variable modifiers are used.

!= Expand the value and pass it to the shell for execution, then assign the output from the child’s

standard output to the variable. Any newlines in the result are replaced with spaces.

Expansion of variables
In most contexts where variables are expanded, ‘$$’ expands to a single dollar sign. In other contexts

(most variable modifiers, string literals in conditions), ‘\$’ expands to a single dollar sign.

References to variables have the form ${name[:modifiers]} or $(name[:modifiers]). If the variable name

consists of only a single character and the expression contains no modifiers, the surrounding curly

braces or parentheses are not required. This shorter form is not recommended.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

If the variable name contains a dollar, the name itself is expanded first. This allows almost arbitrary

variable names, however names containing dollar, braces, parentheses or whitespace are really best

avoided.

If the result of expanding a nested variable expression contains a dollar sign (‘$’), the result is subject to

further expansion.

Variable substitution occurs at four distinct times, depending on where the variable is being used.

1. Variables in dependency lines are expanded as the line is read.

2. Variables in conditionals are expanded individually, but only as far as necessary to determine the

result of the conditional.

3. Variables in shell commands are expanded when the shell command is executed.

4. .for loop index variables are expanded on each loop iteration. Note that other variables are not

expanded when composing the body of a loop, so the following example code:

.for i in 1 2 3

a+= ${i}

j= ${i}

b+= ${j}

.endfor

all:

@echo ${a}

@echo ${b}

prints:

1 2 3

3 3 3

After the loop is executed:

a contains ‘${:U1} ${:U2} ${:U3}’, which expands to ‘1 2 3’.

j contains ‘${:U3}’, which expands to ‘3’.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

b contains ‘${j} ${j} ${j}’, which expands to ‘${:U3} ${:U3} ${:U3}’ and further to ‘3

3 3’.

Variable classes
The four different classes of variables (in order of increasing precedence) are:

Environment variables

Variables defined as part of make’s environment.

Global variables

Variables defined in the makefile or in included makefiles.

Command line variables

Variables defined as part of the command line.

Local variables

Variables that are defined specific to a certain target.

Local variables can be set on a dependency line, unless .MAKE.TARGET_LOCAL_VARIABLES is set

to ‘false’. The rest of the line (which already has had global variables expanded) is the variable value.

For example:

COMPILER_WRAPPERS= ccache distcc icecc

${OBJS}: .MAKE.META.CMP_FILTER=${COMPILER_WRAPPERS:S,^,N,}

Only the targets ‘${OBJS}’ are impacted by that filter (in "meta" mode) and simply enabling/disabling

any of the compiler wrappers does not render all of those targets out-of-date.

NOTE: target-local variable assignments behave differently in that;

+= Only appends to a previous local assignment for the same target and variable.

:= Is redundant with respect to global variables, which have already been expanded.

The seven built-in local variables are:

.ALLSRC The list of all sources for this target; also known as ‘>’.

.ARCHIVE The name of the archive file; also known as ‘!’.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.IMPSRC In suffix-transformation rules, the name/path of the source from which the target is to

be transformed (the "implied" source); also known as ‘<’. It is not defined in explicit

rules.

.MEMBER The name of the archive member; also known as ‘%’.

.OODATE The list of sources for this target that were deemed out-of-date; also known as ‘?’.

.PREFIX The name of the target with suffix (if declared in .SUFFIXES) removed; also known

as ‘*’.

.TARGET The name of the target; also known as ‘@’. For compatibility with other makes this

is an alias for .ARCHIVE in archive member rules.

The shorter forms (‘>’, ‘!’, ‘<’, ‘%’, ‘?’, ‘*’, and ‘@’) are permitted for backward compatibility with

historical makefiles and legacy POSIX make and are not recommended.

Variants of these variables with the punctuation followed immediately by ‘D’ or ‘F’, e.g. ‘$(@D)’, are

legacy forms equivalent to using the ‘:H’ and ‘:T’ modifiers. These forms are accepted for compatibility

with AT&T System V UNIX makefiles and POSIX but are not recommended.

Four of the local variables may be used in sources on dependency lines because they expand to the

proper value for each target on the line. These variables are ‘.TARGET’, ‘.PREFIX’, ‘.ARCHIVE’, and

‘.MEMBER’.

Additional built-in variables
In addition, make sets or knows about the following variables:

.ALLTARGETS

The list of all targets encountered in the makefiles. If evaluated during makefile parsing, lists only

those targets encountered thus far.

.CURDIR

A path to the directory where make was executed. Refer to the description of ‘PWD’ for more

details.

.ERROR_CMD

Is used in error handling, see MAKE_PRINT_VAR_ON_ERROR.

.ERROR_CWD

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

Is used in error handling, see MAKE_PRINT_VAR_ON_ERROR.

.ERROR_META_FILE

Is used in error handling in "meta" mode, see MAKE_PRINT_VAR_ON_ERROR.

.ERROR_TARGET

Is used in error handling, see MAKE_PRINT_VAR_ON_ERROR.

.INCLUDEDFROMDIR

The directory of the file this makefile was included from.

.INCLUDEDFROMFILE

The filename of the file this makefile was included from.

MACHINE

The machine hardware name, see uname(1).

MACHINE_ARCH

The machine processor architecture name, see uname(1).

MAKE

The name that make was executed with (argv[0]).

.MAKE

The same as MAKE, for compatibility. The preferred variable to use is the environment variable

MAKE because it is more compatible with other make variants and cannot be confused with the

special target with the same name.

.MAKE.ALWAYS_PASS_JOB_QUEUE

Tells make whether to pass the descriptors of the job token queue even if the target is not tagged

with .MAKE The default is ‘yes’ for backwards compatability with FreeBSD 9.0 and earlier.

.MAKE.DEPENDFILE

Names the makefile (default ‘.depend’) from which generated dependencies are read.

.MAKE.DIE_QUIETLY

If set to ‘true’, do not print error information at the end.

.MAKE.EXPAND_VARIABLES

A boolean that controls the default behavior of the -V option. If true, variable values printed with

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

-V are fully expanded; if false, the raw variable contents (which may include additional

unexpanded variable references) are shown.

.MAKE.EXPORTED

The list of variables exported by make.

MAKEFILE

The top-level makefile that is currently read, as given in the command line.

.MAKEFLAGS

The environment variable ‘MAKEFLAGS’ may contain anything that may be specified on make’s

command line. Anything specified on make’s command line is appended to the .MAKEFLAGS

variable, which is then added to the environment for all programs that make executes.

.MAKE.GID

The numeric group ID of the user running make. It is read-only.

.MAKE.JOB.PREFIX

If make is run with -j, the output for each target is prefixed with a token

--- target ---

the first part of which can be controlled via .MAKE.JOB.PREFIX. If .MAKE.JOB.PREFIX is

empty, no token is printed. For example, setting .MAKE.JOB.PREFIX to

‘${.newline}---${.MAKE:T}[${.MAKE.PID}]’ would produce tokens like

---make[1234] target ---

making it easier to track the degree of parallelism being achieved.

.MAKE.JOBS

The argument to the -j option.

.MAKE.LEVEL

The recursion depth of make. The top-level instance of make has level 0, and each child make has

its parent level plus 1. This allows tests like: .if ${.MAKE.LEVEL} == 0 to protect things which

should only be evaluated in the top-level instance of make.

.MAKE.LEVEL.ENV

The name of the environment variable that stores the level of nested calls to make.

.MAKE.MAKEFILE_PREFERENCE

The ordered list of makefile names (default ‘makefile’, ‘Makefile’) that make looks for.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.MAKE.MAKEFILES

The list of makefiles read by make, which is useful for tracking dependencies. Each makefile is

recorded only once, regardless of the number of times read.

.MAKE.META.BAILIWICK

In "meta" mode, provides a list of prefixes which match the directories controlled by make. If a file

that was generated outside of .OBJDIR but within said bailiwick is missing, the current target is

considered out-of-date.

.MAKE.META.CMP_FILTER

In "meta" mode, it can (very rarely!) be useful to filter command lines before comparison. This

variable can be set to a set of modifiers that are applied to each line of the old and new command

that differ, if the filtered commands still differ, the target is considered out-of-date.

.MAKE.META.CREATED

In "meta" mode, this variable contains a list of all the meta files updated. If not empty, it can be

used to trigger processing of .MAKE.META.FILES.

.MAKE.META.FILES

In "meta" mode, this variable contains a list of all the meta files used (updated or not). This list can

be used to process the meta files to extract dependency information.

.MAKE.META.IGNORE_FILTER

Provides a list of variable modifiers to apply to each pathname. Ignore if the expansion is an empty

string.

.MAKE.META.IGNORE_PATHS

Provides a list of path prefixes that should be ignored; because the contents are expected to change

over time. The default list includes: ‘/dev /etc /proc /tmp /var/run /var/tmp’

.MAKE.META.IGNORE_PATTERNS

Provides a list of patterns to match against pathnames. Ignore any that match.

.MAKE.META.PREFIX

Defines the message printed for each meta file updated in "meta verbose" mode. The default value

is:

Building ${.TARGET:H:tA}/${.TARGET:T}

.MAKE.MODE

Processed after reading all makefiles. Affects the mode that make runs in. It can contain these

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

keywords:

compat
Like -B, puts make into "compat" mode.

meta Puts make into "meta" mode, where meta files are created for each target to capture the

command run, the output generated, and if filemon(4) is available, the system calls which

are of interest to make. The captured output can be useful when diagnosing errors.

curdirOk=bf

By default, make does not create .meta files in ‘.CURDIR’. This can be overridden by

setting bf to a value which represents true.

missing-meta=bf

If bf is true, a missing .meta file makes the target out-of-date.

missing-filemon=bf

If bf is true, missing filemon data makes the target out-of-date.

nofilemon
Do not use filemon(4).

env For debugging, it can be useful to include the environment in the .meta file.

verbose
If in "meta" mode, print a clue about the target being built. This is useful if the build is

otherwise running silently. The message printed is the expanded value of

.MAKE.META.PREFIX.

ignore-cmd
Some makefiles have commands which are simply not stable. This keyword causes them to

be ignored for determining whether a target is out of date in "meta" mode. See also

.NOMETA_CMP.

silent=bf

If bf is true, when a .meta file is created, mark the target .SILENT.

randomize-targets
In both compat and parallel mode, do not make the targets in the usual order, but instead

randomize their order. This mode can be used to detect undeclared dependencies between

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

files.

MAKEOBJDIR

Used to create files in a separate directory, see .OBJDIR.

MAKE_OBJDIR_CHECK_WRITABLE

Used to force a separate directory for the created files, even if that directory is not writable, see

.OBJDIR.

MAKEOBJDIRPREFIX

Used to create files in a separate directory, see .OBJDIR.

.MAKE.OS

The name of the operating system, see uname(1). It is read-only.

.MAKEOVERRIDES

This variable is used to record the names of variables assigned to on the command line, so that they

may be exported as part of ‘MAKEFLAGS’. This behavior can be disabled by assigning an empty

value to ‘.MAKEOVERRIDES’ within a makefile. Extra variables can be exported from a

makefile by appending their names to ‘.MAKEOVERRIDES’. ‘MAKEFLAGS’ is re-exported

whenever ‘.MAKEOVERRIDES’ is modified.

.MAKE.PATH_FILEMON

If make was built with filemon(4) support, this is set to the path of the device node. This allows

makefiles to test for this support.

.MAKE.PID

The process ID of make. It is read-only.

.MAKE.PPID

The parent process ID of make. It is read-only.

MAKE_PRINT_VAR_ON_ERROR

When make stops due to an error, it sets ‘.ERROR_TARGET’ to the name of the target that failed,

‘.ERROR_CMD’ to the commands of the failed target, and in "meta" mode, it also sets

‘.ERROR_CWD’ to the getcwd(3), and ‘.ERROR_META_FILE’ to the path of the meta file (if

any) describing the failed target. It then prints its name and the value of ‘.CURDIR’ as well as the

value of any variables named in ‘MAKE_PRINT_VAR_ON_ERROR’.

.MAKE.SAVE_DOLLARS

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

If true, ‘$$’ are preserved when doing ‘:=’ assignments. The default is false, for backwards

compatibility. Set to true for compatability with other makes. If set to false, ‘$$’ becomes ‘$’ per

normal evaluation rules.

.MAKE.TARGET_LOCAL_VARIABLES

If set to ‘false’, apparent variable assignments in dependency lines are treated as normal sources.

.MAKE.UID

The numeric ID of the user running make. It is read-only.

.newline

This variable is simply assigned a newline character as its value. It is read-only. This allows

expansions using the :@ modifier to put a newline between iterations of the loop rather than a

space. For example, in case of an error, make prints the variable names and their values using:

${MAKE_PRINT_VAR_ON_ERROR:@v@$v=’${$v}’${.newline}@}

.OBJDIR

A path to the directory where the targets are built. Its value is determined by trying to chdir(2) to

the following directories in order and using the first match:

1. ${MAKEOBJDIRPREFIX}${.CURDIR}

(Only if ‘MAKEOBJDIRPREFIX’ is set in the environment or on the command line.)

2. ${MAKEOBJDIR}

(Only if ‘MAKEOBJDIR’ is set in the environment or on the command line.)

3. ${.CURDIR}/obj.${MACHINE}

4. ${.CURDIR}/obj

5. /usr/obj/${.CURDIR}

6. ${.CURDIR}

Variable expansion is performed on the value before it is used, so expressions such as

${.CURDIR:S,^/usr/src,/var/obj,} may be used. This is especially useful with ‘MAKEOBJDIR’.

‘.OBJDIR’ may be modified in the makefile via the special target ‘.OBJDIR’. In all cases, make

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

changes to the specified directory if it exists, and sets ‘.OBJDIR’ and ‘PWD’ to that directory

before executing any targets.

Except in the case of an explicit ‘.OBJDIR’ target, make checks that the specified directory is

writable and ignores it if not. This check can be skipped by setting the environment variable

‘MAKE_OBJDIR_CHECK_WRITABLE’ to "no".

.PARSEDIR

The directory name of the current makefile being parsed.

.PARSEFILE

The basename of the current makefile being parsed. This variable and ‘.PARSEDIR’ are both set

only while the makefiles are being parsed. To retain their current values, assign them to a variable

using assignment with expansion ‘:=’.

.PATH

The space-separated list of directories that make searches for files. To update this search list, use

the special target ‘.PATH’ rather than modifying the variable directly.

%POSIX

Is set in POSIX mode, see the special ‘.POSIX’ target.

PWD

Alternate path to the current directory. make normally sets ‘.CURDIR’ to the canonical path given

by getcwd(3). However, if the environment variable ‘PWD’ is set and gives a path to the current

directory, make sets ‘.CURDIR’ to the value of ‘PWD’ instead. This behavior is disabled if

‘MAKEOBJDIRPREFIX’ is set or ‘MAKEOBJDIR’ contains a variable transform. ‘PWD’ is set

to the value of ‘.OBJDIR’ for all programs which make executes.

.SHELL

The pathname of the shell used to run target scripts. It is read-only.

.SUFFIXES

The list of known suffixes. It is read-only.

.SYSPATH

The space-separated list of directories that make searches for makefiles, referred to as the system

include path. To update this search list, use the special target ‘.SYSPATH’ rather than modifying

the variable which is read-only.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.TARGETS

The list of targets explicitly specified on the command line, if any.

VPATH

The colon-separated (":") list of directories that make searches for files. This variable is supported

for compatibility with old make programs only, use ‘.PATH’ instead.

Variable modifiers
The general format of a variable expansion is:

${variable[:modifier[:...]]}

Each modifier begins with a colon. To escape a colon, precede it with a backslash ‘\’.

A list of indirect modifiers can be specified via a variable, as follows:

modifier_variable = modifier[:...]

${variable:${modifier_variable}[:...]}

In this case, the first modifier in the modifier_variable does not start with a colon, since that colon

already occurs in the referencing variable. If any of the modifiers in the modifier_variable contains a

dollar sign (‘$’), these must be doubled to avoid early expansion.

Some modifiers interpret the expression value as a single string, others treat the expression value as a

whitespace-separated list of words. When splitting a string into words, whitespace can be escaped using

double quotes, single quotes and backslashes, like in the shell. The quotes and backslashes are retained

in the words.

The supported modifiers are:

:E Replaces each word with its suffix.

:H Replaces each word with its dirname.

:Mpattern

Selects only those words that match pattern. The standard shell wildcard characters (‘*’, ‘?’, and

‘[]’) may be used. The wildcard characters may be escaped with a backslash (‘\’). As a

consequence of the way values are split into words, matched, and then joined, the construct

‘${VAR:M*}’ removes all leading and trailing whitespace and normalizes the inter-word spacing

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

to a single space.

:Npattern

This is the opposite of ‘:M’, selecting all words which do not match pattern.

:O Orders the words lexicographically.

:On Orders the words numerically. A number followed by one of ‘k’, ‘M’ or ‘G’ is multiplied by the

appropriate factor, which is 1024 for ‘k’, 1048576 for ‘M’, or 1073741824 for ‘G’. Both upper-

and lower-case letters are accepted.

:Or Orders the words in reverse lexicographical order.

:Orn Orders the words in reverse numerical order.

:Ox Shuffles the words. The results are different each time you are referring to the modified variable;

use the assignment with expansion ‘:=’ to prevent such behavior. For example,

LIST= uno due tre quattro

RANDOM_LIST= ${LIST:Ox}

STATIC_RANDOM_LIST:=${LIST:Ox}

all:

@echo "${RANDOM_LIST}"

@echo "${RANDOM_LIST}"

@echo "${STATIC_RANDOM_LIST}"

@echo "${STATIC_RANDOM_LIST}"

may produce output similar to:

quattro due tre uno

tre due quattro uno

due uno quattro tre

due uno quattro tre

:Q Quotes every shell meta-character in the value, so that it can be passed safely to the shell.

:q Quotes every shell meta-character in the value, and also doubles ‘$’ characters so that it can be

passed safely through recursive invocations of make. This is equivalent to ‘:S/\$/&&/g:Q’.

:R Replaces each word with everything but its suffix.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

:range[=count]

The value is an integer sequence representing the words of the original value, or the supplied

count.

:gmtime[=timestamp]

The value is interpreted as a format string for strftime(3), using gmtime(3), producing the

formatted timestamp. If a timestamp value is not provided or is 0, the current time is used.

:hash
Computes a 32-bit hash of the value and encodes it as 8 hex digits.

:localtime[=timestamp]

The value is interpreted as a format string for strftime(3), using localtime(3), producing the

formatted timestamp. If a timestamp value is not provided or is 0, the current time is used.

:mtime[=timestamp]

Call stat(2) with each word as pathname; use ‘st_mtime’ as the new value. If stat(2) fails; use

timestamp or current time. If timestamp is set to ‘error’, then stat(2) failure will cause an error.

:tA Attempts to convert the value to an absolute path using realpath(3). If that fails, the value is

unchanged.

:tl Converts the value to lower-case letters.

:tsc When joining the words after a modifier that treats the value as words, the words are normally

separated by a space. This modifier changes the separator to the character c. If c is omitted, no

separator is used. The common escapes (including octal numeric codes) work as expected.

:tu Converts the value to upper-case letters.

:tW Causes subsequent modifiers to treat the value as a single word (possibly containing embedded

whitespace). See also ‘:[*]’.

:tw Causes the value to be treated as a list of words. See also ‘:[@]’.

:S/old_string/new_string/[1gW]

Modifies the first occurrence of old_string in each word of the value, replacing it with new_string.

If a ‘g’ is appended to the last delimiter of the pattern, all occurrences in each word are replaced.

If a ‘1’ is appended to the last delimiter of the pattern, only the first occurrence is affected. If a

‘W’ is appended to the last delimiter of the pattern, the value is treated as a single word. If

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

old_string begins with a caret (‘^’), old_string is anchored at the beginning of each word. If

old_string ends with a dollar sign (‘$’), it is anchored at the end of each word. Inside new_string,

an ampersand (‘&’) is replaced by old_string (without the anchoring ‘^’ or ‘$’). Any character

may be used as the delimiter for the parts of the modifier string. The anchoring, ampersand and

delimiter characters can be escaped with a backslash (‘\’).

Both old_string and new_string may contain nested expressions. To prevent a dollar sign from

starting a nested expression, escape it with a backslash.

:C/pattern/replacement/[1gW]

The :C modifier works like the :S modifier except that the old and new strings, instead of being

simple strings, are an extended regular expression pattern (see regex(3)) and an ed(1)-style

replacement. Normally, the first occurrence of the pattern pattern in each word of the value is

substituted with replacement. The ‘1’ modifier causes the substitution to apply to at most one

word; the ‘g’ modifier causes the substitution to apply to as many instances of the search pattern

pattern as occur in the word or words it is found in; the ‘W’ modifier causes the value to be treated

as a single word (possibly containing embedded whitespace).

As for the :S modifier, the pattern and replacement are subjected to variable expansion before

being parsed as regular expressions.

:T Replaces each word with its last path component (basename).

:u Removes adjacent duplicate words (like uniq(1)).

:?true_string:false_string

If the variable name (not its value), when parsed as a .if conditional expression, evaluates to true,

return as its value the true_string, otherwise return the false_string. Since the variable name is

used as the expression, :? must be the first modifier after the variable name itself--which, of

course, usually contains variable expansions. A common error is trying to use expressions like

${NUMBERS:M42:?match:no}

which actually tests defined(NUMBERS). To determine if any words match "42", you need to use

something like:

${"${NUMBERS:M42}" != "":?match:no}.

:old_string=new_string

This is the AT&T System V UNIX style substitution. It can only be the last modifier specified, as

a ‘:’ in either old_string or new_string is treated as a regular character, not as the end of the

modifier.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

If old_string does not contain the pattern matching character ‘%’, and the word ends with

old_string or equals it, that suffix is replaced with new_string.

Otherwise, the first ‘%’ in old_string matches a possibly empty substring of arbitrary characters,

and if the whole pattern is found in the word, the matching part is replaced with new_string, and

the first occurrence of ‘%’ in new_string (if any) is replaced with the substring matched by the

‘%’.

Both old_string and new_string may contain nested expressions. To prevent a dollar sign from

starting a nested expression, escape it with a backslash.

:@varname@string@
This is the loop expansion mechanism from the OSF Development Environment (ODE) make.

Unlike .for loops, expansion occurs at the time of reference. For each word in the value, assign the

word to the variable named varname and evaluate string. The ODE convention is that varname

should start and end with a period, for example:

${LINKS:@.LINK.@${LN} ${TARGET} ${.LINK.}@}

However, a single-letter variable is often more readable:

${MAKE_PRINT_VAR_ON_ERROR:@v@$v=’${$v}’${.newline}@}

:_[=var]

Saves the current variable value in ‘$_’ or the named var for later reference. Example usage:

M_cmpv.units = 1 1000 1000000

M_cmpv = S,., ,g:_:range:@i@+ $${_:[-$$i]} \

* $${M_cmpv.units:[$$i]}@:S,^,expr 0 ,1:sh

.if ${VERSION:${M_cmpv}} < ${3.1.12:L:${M_cmpv}}

Here ‘$_’ is used to save the result of the ‘:S’ modifier which is later referenced using the index

values from ‘:range’.

:Unewval

If the variable is undefined, newval is the value. If the variable is defined, the existing value is

returned. This is another ODE make feature. It is handy for setting per-target CFLAGS for

instance:

${_${.TARGET:T}_CFLAGS:U${DEF_CFLAGS}}

If a value is only required if the variable is undefined, use:

${VAR:D:Unewval}

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

:Dnewval

If the variable is defined, newval is the value.

:L The name of the variable is the value.

:P The path of the node which has the same name as the variable is the value. If no such node exists

or its path is null, the name of the variable is used. In order for this modifier to work, the name

(node) must at least have appeared on the right-hand side of a dependency.

:!cmd!
The output of running cmd is the value.

:sh The value is run as a command, and the output becomes the new value.

::=str

The variable is assigned the value str after substitution. This modifier and its variations are useful

in obscure situations such as wanting to set a variable at a point where a target’s shell commands

are being parsed. These assignment modifiers always expand to nothing.

The ‘::’ helps avoid false matches with the AT&T System V UNIX style ‘:=’ modifier and since

substitution always occurs, the ‘::=’ form is vaguely appropriate.

::?=str

As for ::= but only if the variable does not already have a value.

::+=str

Append str to the variable.

::!=cmd

Assign the output of cmd to the variable.

:[range]
Selects one or more words from the value, or performs other operations related to the way in

which the value is split into words.

An empty value, or a value that consists entirely of white-space, is treated as a single word. For

the purposes of the ‘:[]’ modifier, the words are indexed both forwards using positive integers

(where index 1 represents the first word), and backwards using negative integers (where index -1

represents the last word).

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

The range is subjected to variable expansion, and the expanded result is then interpreted as

follows:

index Selects a single word from the value.

start..end

Selects all words from start to end, inclusive. For example, ‘:[2..-1]’ selects all words from

the second word to the last word. If start is greater than end, the words are output in reverse

order. For example, ‘:[-1..1]’ selects all the words from last to first. If the list is already

ordered, this effectively reverses the list, but it is more efficient to use ‘:Or’ instead of

‘:O:[-1..1]’.

* Causes subsequent modifiers to treat the value as a single word (possibly containing

embedded whitespace). Analogous to the effect of $* in Bourne shell.

0 Means the same as ‘:[*]’.

@ Causes subsequent modifiers to treat the value as a sequence of words delimited by

whitespace. Analogous to the effect of $@ in Bourne shell.

Returns the number of words in the value.

DIRECTIVES
make offers directives for including makefiles, conditionals and for loops. All these directives are

identified by a line beginning with a single dot (‘.’) character, followed by the keyword of the directive,

such as include or if.

File inclusion
Files are included with either .include <file> or .include "file". Variables between the angle brackets or

double quotes are expanded to form the file name. If angle brackets are used, the included makefile is

expected to be in the system makefile directory. If double quotes are used, the including makefile’s

directory and any directories specified using the -I option are searched before the system makefile

directory.

For compatibility with other make variants, ‘include file ...’ (without leading dot) is also accepted.

If the include statement is written as .-include or as .sinclude, errors locating and/or opening include files

are ignored.

If the include statement is written as .dinclude, not only are errors locating and/or opening include files

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

ignored, but stale dependencies within the included file are ignored just like in .MAKE.DEPENDFILE.

Exporting variables
The directives for exporting and unexporting variables are:

.export variable ...

Export the specified global variable. If no variable list is provided, all globals are exported

except for internal variables (those that start with ‘.’). This is not affected by the -X flag, so

should be used with caution. For compatibility with other make programs, export
variable=value (without leading dot) is also accepted.

Appending a variable name to .MAKE.EXPORTED is equivalent to exporting a variable.

.export-env variable ...

The same as ‘.export’, except that the variable is not appended to .MAKE.EXPORTED. This

allows exporting a value to the environment which is different from that used by make
internally.

.export-literal variable ...

The same as ‘.export-env’, except that variables in the value are not expanded.

.unexport variable ...

The opposite of ‘.export’. The specified global variable is removed from .MAKE.EXPORTED.

If no variable list is provided, all globals are unexported, and .MAKE.EXPORTED deleted.

.unexport-env
Unexport all globals previously exported and clear the environment inherited from the parent.

This operation causes a memory leak of the original environment, so should be used sparingly.

Testing for .MAKE.LEVEL being 0 would make sense. Also note that any variables which

originated in the parent environment should be explicitly preserved if desired. For example:

.if ${.MAKE.LEVEL} == 0

PATH := ${PATH}

.unexport-env

.export PATH

.endif

Would result in an environment containing only ‘PATH’, which is the minimal useful

environment. Actually ‘.MAKE.LEVEL’ is also pushed into the new environment.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

Messages
The directives for printing messages to the output are:

.info message

The message is printed along with the name of the makefile and line number.

.warning message

The message prefixed by ‘warning:’ is printed along with the name of the makefile and line

number.

.error message

The message is printed along with the name of the makefile and line number, make exits

immediately.

Conditionals
The directives for conditionals are:

.if [!]expression [operator expression ...]

Test the value of an expression.

.ifdef [!]variable [operator variable ...]

Test whether a variable is defined.

.ifndef [!]variable [operator variable ...]

Test whether a variable is not defined.

.ifmake [!]target [operator target ...]

Test the target being requested.

.ifnmake [!]target [operator target ...]

Test the target being requested.

.else
Reverse the sense of the last conditional.

.elif [!]expression [operator expression ...]

A combination of ‘.else’ followed by ‘.if’.

.elifdef [!]variable [operator variable ...]

A combination of ‘.else’ followed by ‘.ifdef’.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.elifndef [!]variable [operator variable ...]

A combination of ‘.else’ followed by ‘.ifndef’.

.elifmake [!]target [operator target ...]

A combination of ‘.else’ followed by ‘.ifmake’.

.elifnmake [!]target [operator target ...]

A combination of ‘.else’ followed by ‘.ifnmake’.

.endif
End the body of the conditional.

The operator may be any one of the following:

|| Logical OR.

&&
Logical AND; of higher precedence than ‘||’.

make only evaluates a conditional as far as is necessary to determine its value. Parentheses can be used

to override the operator precedence. The boolean operator ‘!’ may be used to logically negate an entire

conditional. It is of higher precedence than ‘&&’.

The value of expression may be any of the following function call expressions:

defined(varname)

Evaluates to true if the variable varname has been defined.

make(target)

Evaluates to true if the target was specified as part of make’s command line or was declared the

default target (either implicitly or explicitly, see .MAIN) before the line containing the conditional.

empty(varname[:modifiers])

Evaluates to true if the expansion of the variable, after applying the modifiers, results in an empty

string.

exists(pathname)

Evaluates to true if the given pathname exists. If relative, the pathname is searched for on the

system search path (see .PATH).

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

target(target)

Evaluates to true if the target has been defined.

commands(target)

Evaluates to true if the target has been defined and has commands associated with it.

Expression may also be an arithmetic or string comparison. Variable expansion is performed on both

sides of the comparison. If both sides are numeric and neither is enclosed in quotes, the comparison is

done numerically, otherwise lexicographically. A string is interpreted as hexadecimal integer if it is

preceded by 0x, otherwise it is a decimal floating-point number; octal numbers are not supported.

All comparisons may use the operators ‘==’ and ‘!=’. Numeric comparisons may also use the operators

‘<’, ‘<=’, ‘>’ and ‘>=’.

If the comparison has neither a comparison operator nor a right side, the expression evaluates to true if it

is nonempty and its numeric value (if any) is not zero.

When make is evaluating one of these conditional expressions, and it encounters a (whitespace

separated) word it doesn’t recognize, either the "make" or "defined" function is applied to it, depending

on the form of the conditional. If the form is ‘.ifdef’, ‘.ifndef’ or ‘.if’, the "defined" function is applied.

Similarly, if the form is ‘.ifmake’ or ‘.ifnmake’, the "make" function is applied.

If the conditional evaluates to true, parsing of the makefile continues as before. If it evaluates to false,

the following lines are skipped. In both cases, this continues until the corresponding ‘.else’ or ‘.endif’ is

found.

For loops
For loops are typically used to apply a set of rules to a list of files. The syntax of a for loop is:

.for variable [variable ...] in expression

<make-lines>

.endfor

The expression is expanded and then split into words. On each iteration of the loop, one word is taken

and assigned to each variable, in order, and these variables are substituted into the make-lines inside the

body of the for loop. The number of words must come out even; that is, if there are three iteration

variables, the number of words provided must be a multiple of three.

If ‘.break’ is encountered within a .for loop, it causes early termination of the loop, otherwise a parse

error.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

Other directives
.undef variable ...

Un-define the specified global variables. Only global variables can be un-defined.

COMMENTS
Comments begin with a hash (‘#’) character, anywhere but in a shell command line, and continue to the

end of an unescaped new line.

SPECIAL SOURCES (ATTRIBUTES)
.EXEC Target is never out of date, but always execute commands anyway.

.IGNORE Ignore any errors from the commands associated with this target, exactly as if they all were

preceded by a dash (‘-’).

.MADE Mark all sources of this target as being up to date.

.MAKE Execute the commands associated with this target even if the -n or -t options were specified.

Normally used to mark recursive makes.

.META Create a meta file for the target, even if it is flagged as .PHONY, .MAKE, or .SPECIAL.

Usage in conjunction with .MAKE is the most likely case. In "meta" mode, the target is

out-of-date if the meta file is missing.

.NOMETA Do not create a meta file for the target. Meta files are also not created for .PHONY,

.MAKE, or .SPECIAL targets.

.NOMETA_CMP
Ignore differences in commands when deciding if target is out of date. This is useful if the

command contains a value which always changes. If the number of commands change,

though, the target is still considered out of date. The same effect applies to any command

line that uses the variable .OODATE, which can be used for that purpose even when not

otherwise needed or desired:

skip-compare-for-some:

@echo this is compared

@echo this is not ${.OODATE:M.NOMETA_CMP}

@echo this is also compared

The :M pattern suppresses any expansion of the unwanted variable.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.NOPATH Do not search for the target in the directories specified by .PATH.

.NOTMAIN
Normally make selects the first target it encounters as the default target to be built if no

target was specified. This source prevents this target from being selected.

.OPTIONAL
If a target is marked with this attribute and make can’t figure out how to create it, it ignores

this fact and assumes the file isn’t needed or already exists.

.PHONY The target does not correspond to an actual file; it is always considered to be out of date,

and is not created with the -t option. Suffix-transformation rules are not applied to

.PHONY targets.

.PRECIOUS
When make is interrupted, it normally removes any partially made targets. This source

prevents the target from being removed.

.RECURSIVE
Synonym for .MAKE.

.SILENT Do not echo any of the commands associated with this target, exactly as if they all were

preceded by an at sign (‘@’).

.USE Turn the target into make’s version of a macro. When the target is used as a source for

another target, the other target acquires the commands, sources, and attributes (except for

.USE) of the source. If the target already has commands, the .USE target’s commands are

appended to them.

.USEBEFORE
Like .USE, but instead of appending, prepend the .USEBEFORE target commands to the

target.

.WAIT If .WAIT appears in a dependency line, the sources that precede it are made before the

sources that succeed it in the line. Since the dependents of files are not made until the file

itself could be made, this also stops the dependents being built unless they are needed for

another branch of the dependency tree. So given:

x: a .WAIT b

echo x

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

a:

echo a

b: b1

echo b

b1:

echo b1

the output is always ‘a’, ‘b1’, ‘b’, ‘x’.

The ordering imposed by .WAIT is only relevant for parallel makes.

SPECIAL TARGETS
Special targets may not be included with other targets, i.e. they must be the only target specified.

.BEGIN Any command lines attached to this target are executed before anything else is done.

.DEFAULT
This is sort of a .USE rule for any target (that was used only as a source) that make can’t

figure out any other way to create. Only the shell script is used. The .IMPSRC variable of a

target that inherits .DEFAULT’s commands is set to the target’s own name.

.DELETE_ON_ERROR
If this target is present in the makefile, it globally causes make to delete targets whose

commands fail. (By default, only targets whose commands are interrupted during execution

are deleted. This is the historical behavior.) This setting can be used to help prevent half-

finished or malformed targets from being left around and corrupting future rebuilds.

.END Any command lines attached to this target are executed after everything else is done

successfully.

.ERROR Any command lines attached to this target are executed when another target fails. The

.ERROR_TARGET variable is set to the target that failed. See also

MAKE_PRINT_VAR_ON_ERROR.

.IGNORE
Mark each of the sources with the .IGNORE attribute. If no sources are specified, this is the

equivalent of specifying the -i option.

.INTERRUPT
If make is interrupted, the commands for this target are executed.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.MAIN If no target is specified when make is invoked, this target is built.

.MAKEFLAGS
This target provides a way to specify flags for make at the time when the makefiles are read.

The flags are as if typed to the shell, though the -f option has no effect.

.NOPATH
Apply the .NOPATH attribute to any specified sources.

.NOTPARALLEL
Disable parallel mode.

.NO_PARALLEL
Synonym for .NOTPARALLEL, for compatibility with other pmake variants.

.NOREADONLY
clear the read-only attribute from the global variables specified as sources.

.OBJDIR The source is a new value for ‘.OBJDIR’. If it exists, make changes the current working

directory to it and updates the value of ‘.OBJDIR’.

.ORDER In parallel mode, the named targets are made in sequence. This ordering does not add targets

to the list of targets to be made.

Since the dependents of a target do not get built until the target itself could be built, unless ‘a’

is built by another part of the dependency graph, the following is a dependency loop:

.ORDER: b a

b: a

.PATH The sources are directories which are to be searched for files not found in the current

directory. If no sources are specified, any previously specified directories are removed from

the search path. If the source is the special .DOTLAST target, the current working directory

is searched last.

.PATH.suffix

Like .PATH but applies only to files with a particular suffix. The suffix must have been

previously declared with .SUFFIXES.

.PHONY Apply the .PHONY attribute to any specified sources.

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.POSIX If this is the first non-comment line in the main makefile, the variable %POSIX is set to the

value ‘1003.2’ and the makefile ‘<posix.mk>’ is included if it exists, to provide POSIX-

compatible default rules. If make is run with the -r flag, only ‘posix.mk’ contributes to the

default rules.

.PRECIOUS
Apply the .PRECIOUS attribute to any specified sources. If no sources are specified, the

.PRECIOUS attribute is applied to every target in the file.

.READONLY
set the read-only attribute on the global variables specified as sources.

.SHELL Sets the shell that make uses to execute commands in jobs mode. The sources are a set of

field=value pairs.

name This is the minimal specification, used to select one of the built-in shell specs; sh,

ksh, and csh.

path Specifies the absolute path to the shell.

hasErrCtl Indicates whether the shell supports exit on error.

check The command to turn on error checking.

ignore The command to disable error checking.

echo The command to turn on echoing of commands executed.

quiet The command to turn off echoing of commands executed.

filter The output to filter after issuing the quiet command. It is typically identical to

quiet.

errFlag The flag to pass the shell to enable error checking.

echoFlag The flag to pass the shell to enable command echoing.

newline The string literal to pass the shell that results in a single newline character when

used outside of any quoting characters.

Example:

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

.SHELL: name=ksh path=/bin/ksh hasErrCtl=true \

check="set -e" ignore="set +e" \

echo="set -v" quiet="set +v" filter="set +v" \

echoFlag=v errFlag=e newline="’\n’"

.SILENT Apply the .SILENT attribute to any specified sources. If no sources are specified, the

.SILENT attribute is applied to every command in the file.

.STALE This target gets run when a dependency file contains stale entries, having .ALLSRC set to the

name of that dependency file.

.SUFFIXES
Each source specifies a suffix to make. If no sources are specified, any previously specified

suffixes are deleted. It allows the creation of suffix-transformation rules.

Example:

.SUFFIXES: .c .o

.c.o:

cc -o ${.TARGET} -c ${.IMPSRC}

.SYSPATH
The sources are directories which are to be added to the system include path which make
searches for makefiles. If no sources are specified, any previously specified directories are

removed from the system include path.

ENVIRONMENT
make uses the following environment variables, if they exist: MACHINE, MACHINE_ARCH, MAKE,

MAKEFLAGS, MAKEOBJDIR, MAKEOBJDIRPREFIX, MAKESYSPATH, PWD, and TMPDIR.

MAKEOBJDIRPREFIX and MAKEOBJDIR may only be set in the environment or on the command

line to make and not as makefile variables; see the description of ‘.OBJDIR’ for more details.

FILES
.depend list of dependencies

makefile first default makefile if no makefile is specified on the command line

Makefile second default makefile if no makefile is specified on the command line

sys.mk system makefile

/usr/share/mk system makefile directory

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

COMPATIBILITY
The basic make syntax is compatible between different make variants; however the special variables,

variable modifiers and conditionals are not.

Older versions
An incomplete list of changes in older versions of make:

The way that .for loop variables are substituted changed after NetBSD 5.0 so that they still appear to be

variable expansions. In particular this stops them being treated as syntax, and removes some obscure

problems using them in .if statements.

The way that parallel makes are scheduled changed in NetBSD 4.0 so that .ORDER and .WAIT apply

recursively to the dependent nodes. The algorithms used may change again in the future.

Other make dialects
Other make dialects (GNU make, SVR4 make, POSIX make, etc.) do not support most of the features of

make as described in this manual. Most notably:

+o The .WAIT and .ORDER declarations and most functionality pertaining to parallelization.

(GNU make supports parallelization but lacks the features needed to control it effectively.)

+o Directives, including for loops and conditionals and most of the forms of include files. (GNU

make has its own incompatible and less powerful syntax for conditionals.)

+o All built-in variables that begin with a dot.

+o Most of the special sources and targets that begin with a dot, with the notable exception of

.PHONY, .PRECIOUS, and .SUFFIXES.

+o Variable modifiers, except for the ‘:old=new’ string substitution, which does not portably

support globbing with ‘%’ and historically only works on declared suffixes.

+o The $> variable even in its short form; most makes support this functionality but its name

varies.

Some features are somewhat more portable, such as assignment with +=, ?=, and !=. The .PATH

functionality is based on an older feature VPATH found in GNU make and many versions of SVR4

make; however, historically its behavior is too ill-defined (and too buggy) to rely upon.

The $@ and $< variables are more or less universally portable, as is the $(MAKE) variable. Basic use

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

of suffix rules (for files only in the current directory, not trying to chain transformations together, etc.) is

also reasonably portable.

SEE ALSO
mkdep(1), style.Makefile(5)

HISTORY
A make command appeared in Version 7 AT&T UNIX. This make implementation is based on Adam

de Boor’s pmake program, which was written for Sprite at Berkeley. It was designed to be a parallel

distributed make running jobs on different machines using a daemon called "customs".

Historically the target/dependency FRC has been used to FoRCe rebuilding (since the target/dependency

does not exist ... unless someone creates an FRC file).

BUGS
The make syntax is difficult to parse. For instance, finding the end of a variable’s use should involve

scanning each of the modifiers, using the correct terminator for each field. In many places make just

counts {} and () in order to find the end of a variable expansion.

There is no way of escaping a space character in a filename.

In jobs mode, when a target fails; make will put an error token into the job token pool. This will cause

all other instances of make using that token pool to abort the build and exit with error code 6.

Sometimes the attempt to suppress a cascade of unnecessary errors, can result in a seemingly

unexplained ‘*** Error code 6’

MAKE(1) FreeBSD General Commands Manual MAKE(1)

FreeBSD 14.0-RELEASE-p11 May 10, 2023 FreeBSD 14.0-RELEASE-p11

