FreeBSD manual
download PDF document: openssl-enc.1.pdf
OPENSSL-ENC(1ossl) OpenSSL OPENSSL-ENC(1ossl)
NAME
openssl-enc - symmetric cipher routines
SYNOPSIS
openssl enc|cipher [-cciipphheerr] [-help] [-list] [-ciphers] [-in filename]
[-out filename] [-pass arg] [-e] [-d] [-a] [-base64] [-A] [-k password]
[-kfile filename] [-K key] [-iv IV] [-S salt] [-salt] [-nosalt] [-z]
[-md digest] [-iter count] [-pbkdf2] [-p] [-P] [-bufsize number]
[-nopad] [-v] [-debug] [-none] [-engine id] [-rand files] [-writerand
file] [-provider name] [-provider-path path] [-propquery propq]
openssl cipher [...]
DESCRIPTION
The symmetric cipher commands allow data to be encrypted or decrypted
using various block and stream ciphers using keys based on passwords or
explicitly provided. Base64 encoding or decoding can also be performed
either by itself or in addition to the encryption or decryption.
OPTIONS
-cciipphheerr
The cipher to use.
-help
Print out a usage message.
-list
List all supported ciphers.
-ciphers
Alias of -list to display all supported ciphers.
-in filename
The input filename, standard input by default.
-out filename
The output filename, standard output by default.
-pass arg
The password source. For more information about the format of arg
see openssl-passphrase-options(1).
-e Encrypt the input data: this is the default.
-d Decrypt the input data.
-a Base64 process the data. This means that if encryption is taking
place the data is base64 encoded after encryption. If decryption is
set then the input data is base64 decoded before being decrypted.
-base64
Same as -a
-A If the -a option is set then base64 process the data on one line.
-k password
-md digest
Use the specified digest to create the key from the passphrase.
The default algorithm is sha-256.
-iter count
Use a given number of iterations on the password in deriving the
encryption key. High values increase the time required to brute-
force the resulting file. This option enables the use of PBKDF2
algorithm to derive the key.
-pbkdf2
Use PBKDF2 algorithm with a default iteration count of 10000 unless
otherwise specified by the -iter command line option.
-nosalt
Don't use a salt in the key derivation routines. This option SHOULD
NOT be used except for test purposes or compatibility with ancient
versions of OpenSSL.
-salt
Use salt (randomly generated or provide with -S option) when
encrypting, this is the default.
-S salt
The actual salt to use: this must be represented as a string of hex
digits. If this option is used while encrypting, the same exact
value will be needed again during decryption.
-K key
The actual key to use: this must be represented as a string
comprised only of hex digits. If only the key is specified, the IV
must additionally specified using the -iv option. When both a key
and a password are specified, the key given with the -K option will
be used and the IV generated from the password will be taken. It
does not make much sense to specify both key and password.
-iv IV
The actual IV to use: this must be represented as a string
comprised only of hex digits. When only the key is specified using
the -K option, the IV must explicitly be defined. When a password
is being specified using one of the other options, the IV is
generated from this password.
-p Print out the key and IV used.
-P Print out the key and IV used then immediately exit: don't do any
encryption or decryption.
-bufsize number
Set the buffer size for I/O.
-nopad
Disable standard block padding.
-v Verbose print; display some statistics about I/O and buffer sizes.
-debug
Debug the BIOs used for I/O.
-rand files, -writerand file
See "Random State Options" in openssl(1) for details.
-provider name
-provider-path path
-propquery propq
See "Provider Options" in openssl(1), provider(7), and property(7).
-engine id
See "Engine Options" in openssl(1). This option is deprecated.
NOTES
The program can be called either as "openssl cipher" or "openssl enc
-cipher". The first form doesn't work with engine-provided ciphers,
because this form is processed before the configuration file is read
and any ENGINEs loaded. Use the openssl-list(1) command to get a list
of supported ciphers.
Engines which provide entirely new encryption algorithms (such as the
ccgost engine which provides gost89 algorithm) should be configured in
the configuration file. Engines specified on the command line using
-engine option can only be used for hardware-assisted implementations
of ciphers which are supported by the OpenSSL core or another engine
specified in the configuration file.
When the enc command lists supported ciphers, ciphers provided by
engines, specified in the configuration files are listed too.
A password will be prompted for to derive the key and IV if necessary.
The -salt option should ALWAYS be used if the key is being derived from
a password unless you want compatibility with previous versions of
OpenSSL.
Without the -salt option it is possible to perform efficient dictionary
attacks on the password and to attack stream cipher encrypted data. The
reason for this is that without the salt the same password always
generates the same encryption key.
When the salt is generated at random (that means when encrypting using
a passphrase without explicit salt given using -S option), the first
bytes of the encrypted data are reserved to store the salt for later
decrypting.
Some of the ciphers do not have large keys and others have security
implications if not used correctly. A beginner is advised to just use a
strong block cipher, such as AES, in CBC mode.
All the block ciphers normally use PKCS#5 padding, also known as
standard block padding. This allows a rudimentary integrity or password
check to be performed. However, since the chance of random data passing
the test is better than 1 in 256 it isn't a very good test.
If padding is disabled then the input data must be a multiple of the
cipher block length.
All RC2 ciphers have the same key and effective key length.
value.
When using OpenSSL 3.0 or later to decrypt data that was encrypted with
an explicit salt under OpenSSL 1.1.1 do not use the -S option, the salt
will then be read from the ciphertext. To generate ciphertext that can
be decrypted with OpenSSL 1.1.1 do not use the -S option, the salt will
be then be generated randomly and prepended to the output.
SUPPORTED CIPHERS
Note that some of these ciphers can be disabled at compile time and
some are available only if an appropriate engine is configured in the
configuration file. The output when invoking this command with the
-list option (that is "openssl enc -list") is a list of ciphers,
supported by your version of OpenSSL, including ones provided by
configured engines.
This command does not support authenticated encryption modes like CCM
and GCM, and will not support such modes in the future. This is due to
having to begin streaming output (e.g., to standard output when -out is
not used) before the authentication tag could be validated. When this
command is used in a pipeline, the receiving end will not be able to
roll back upon authentication failure. The AEAD modes currently in
common use also suffer from catastrophic failure of confidentiality
and/or integrity upon reuse of key/iv/nonce, and since openssl enc
places the entire burden of key/iv/nonce management upon the user, the
risk of exposing AEAD modes is too great to allow. These key/iv/nonce
management issues also affect other modes currently exposed in this
command, but the failure modes are less extreme in these cases, and the
functionality cannot be removed with a stable release branch. For bulk
encryption of data, whether using authenticated encryption modes or
other modes, openssl-cms(1) is recommended, as it provides a standard
data format and performs the needed key/iv/nonce management.
base64 Base 64
bf-cbc Blowfish in CBC mode
bf Alias for bf-cbc
blowfish Alias for bf-cbc
bf-cfb Blowfish in CFB mode
bf-ecb Blowfish in ECB mode
bf-ofb Blowfish in OFB mode
cast-cbc CAST in CBC mode
cast Alias for cast-cbc
cast5-cbc CAST5 in CBC mode
cast5-cfb CAST5 in CFB mode
cast5-ecb CAST5 in ECB mode
cast5-ofb CAST5 in OFB mode
chacha20 ChaCha20 algorithm
des-cbc DES in CBC mode
des Alias for des-cbc
des-cfb DES in CFB mode
des-ofb DES in OFB mode
des-ecb DES in ECB mode
des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Two key triple DES EDE in ECB mode
des-ede3-ofb Three key triple DES EDE in OFB mode
desx DESX algorithm.
gost89 GOST 28147-89 in CFB mode (provided by ccgost engine)
gost89-cnt GOST 28147-89 in CNT mode (provided by ccgost engine)
idea-cbc IDEA algorithm in CBC mode
idea same as idea-cbc
idea-cfb IDEA in CFB mode
idea-ecb IDEA in ECB mode
idea-ofb IDEA in OFB mode
rc2-cbc 128 bit RC2 in CBC mode
rc2 Alias for rc2-cbc
rc2-cfb 128 bit RC2 in CFB mode
rc2-ecb 128 bit RC2 in ECB mode
rc2-ofb 128 bit RC2 in OFB mode
rc2-64-cbc 64 bit RC2 in CBC mode
rc2-40-cbc 40 bit RC2 in CBC mode
rc4 128 bit RC4
rc4-64 64 bit RC4
rc4-40 40 bit RC4
rc5-cbc RC5 cipher in CBC mode
rc5 Alias for rc5-cbc
rc5-cfb RC5 cipher in CFB mode
rc5-ecb RC5 cipher in ECB mode
rc5-ofb RC5 cipher in OFB mode
seed-cbc SEED cipher in CBC mode
seed Alias for seed-cbc
seed-cfb SEED cipher in CFB mode
seed-ecb SEED cipher in ECB mode
seed-ofb SEED cipher in OFB mode
sm4-cbc SM4 cipher in CBC mode
sm4 Alias for sm4-cbc
sm4-cfb SM4 cipher in CFB mode
sm4-ctr SM4 cipher in CTR mode
sm4-ecb SM4 cipher in ECB mode
sm4-ofb SM4 cipher in OFB mode
aes-[128|192|256]-cbc 128/192/256 bit AES in CBC mode
aes[128|192|256] Alias for aes-[128|192|256]-cbc
aes-[128|192|256]-cfb 128/192/256 bit AES in 128 bit CFB mode
aes-[128|192|256]-cfb1 128/192/256 bit AES in 1 bit CFB mode
aes-[128|192|256]-cfb8 128/192/256 bit AES in 8 bit CFB mode
aes-[128|192|256]-ctr 128/192/256 bit AES in CTR mode
aes-[128|192|256]-ecb 128/192/256 bit AES in ECB mode
aes-[128|192|256]-ofb 128/192/256 bit AES in OFB mode
aria-[128|192|256]-cbc 128/192/256 bit ARIA in CBC mode
aria[128|192|256] Alias for aria-[128|192|256]-cbc
aria-[128|192|256]-cfb 128/192/256 bit ARIA in 128 bit CFB mode
aria-[128|192|256]-cfb1 128/192/256 bit ARIA in 1 bit CFB mode
aria-[128|192|256]-cfb8 128/192/256 bit ARIA in 8 bit CFB mode
aria-[128|192|256]-ctr 128/192/256 bit ARIA in CTR mode
camellia-[128|192|256]-cfb8 128/192/256 bit Camellia in 8 bit CFB mode
camellia-[128|192|256]-ctr 128/192/256 bit Camellia in CTR mode
camellia-[128|192|256]-ecb 128/192/256 bit Camellia in ECB mode
camellia-[128|192|256]-ofb 128/192/256 bit Camellia in OFB mode
EXAMPLES
Just base64 encode a binary file:
openssl base64 -in file.bin -out file.b64
Decode the same file
openssl base64 -d -in file.b64 -out file.bin
Encrypt a file using AES-128 using a prompted password and PBKDF2 key
derivation:
openssl enc -aes128 -pbkdf2 -in file.txt -out file.aes128
Decrypt a file using a supplied password:
openssl enc -aes128 -pbkdf2 -d -in file.aes128 -out file.txt \
-pass pass:<password>
Encrypt a file then base64 encode it (so it can be sent via mail for
example) using AES-256 in CTR mode and PBKDF2 key derivation:
openssl enc -aes-256-ctr -pbkdf2 -a -in file.txt -out file.aes256
Base64 decode a file then decrypt it using a password supplied in a
file:
openssl enc -aes-256-ctr -pbkdf2 -d -a -in file.aes256 -out file.txt \
-pass file:<passfile>
BUGS
The -A option when used with large files doesn't work properly.
The openssl enc command only supports a fixed number of algorithms with
certain parameters. So if, for example, you want to use RC2 with a 76
bit key or RC4 with an 84 bit key you can't use this program.
HISTORY
The default digest was changed from MD5 to SHA256 in OpenSSL 1.1.0.
The -list option was added in OpenSSL 1.1.1e.
The -ciphers and -engine options were deprecated in OpenSSL 3.0.
COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.
3.0.11 2023-09-22 OPENSSL-ENC(1ossl)