FreeBSD manual
download PDF document: busdma.9.pdf
BUS_DMA(9) FreeBSD Kernel Developer's Manual BUS_DMA(9)
NAME
bus_dma, bus_dma_tag_create, bus_dma_tag_destroy, bus_dma_template_init,
bus_dma_template_tag, bus_dma_template_clone, bus_dma_template_fill,
BUS_DMA_TEMPLATE_FILL, bus_dmamap_create, bus_dmamap_destroy,
bus_dmamap_load, bus_dmamap_load_bio, bus_dmamap_load_ccb,
bus_dmamap_load_crp, bus_dmamap_load_crp_buffer, bus_dmamap_load_mbuf,
bus_dmamap_load_mbuf_sg, bus_dmamap_load_uio, bus_dmamap_unload,
bus_dmamap_sync, bus_dmamem_alloc, bus_dmamem_free - Bus and Machine
Independent DMA Mapping Interface
SYNOPSIS
#include <machine/bus.h>
int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filtfunc, void *filtfuncarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags,
bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat);
int
bus_dma_tag_destroy(bus_dma_tag_t dmat);
void
bus_dma_template_init(bus_dma_template_t *template,
bus_dma_tag_t parent);
int
bus_dma_template_tag(bus_dma_template_t *template, bus_dma_tag_t *dmat);
void
bus_dma_template_clone(bus_dma_template_t *template, bus_dma_tag_t dmat);
void
bus_dma_template_fill(bus_dma_template_t *template,
bus_dma_param_t params[], u_int count);
BUS_DMA_TEMPLATE_FILL(bus_dma_template_t *template,
bus_dma_param_t param ...);
int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp);
int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map);
int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback,
void *callback_arg, int flags);
int
bus_dmamap_load_bio(bus_dma_tag_t dmat, bus_dmamap_t map,
struct bio *bio, bus_dmamap_callback_t *callback, void *callback_arg,
int flags);
int
int
bus_dmamap_load_crp_buffer(bus_dma_tag_t dmat, bus_dmamap_t map,
struct crypto_buffer *cb, bus_dmamap_callback_t *callback,
void *callback_arg, int flags);
int
bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *mbuf, bus_dmamap_callback2_t *callback,
void *callback_arg, int flags);
int
bus_dmamap_load_mbuf_sg(bus_dma_tag_t dmat, bus_dmamap_t map,
struct mbuf *mbuf, bus_dma_segment_t *segs, int *nsegs, int flags);
int
bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map,
struct uio *uio, bus_dmamap_callback2_t *callback,
void *callback_arg, int flags);
void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map);
void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, op);
int
bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
bus_dmamap_t *mapp);
void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map);
DESCRIPTION
Direct Memory Access (DMA) is a method of transferring data without
involving the CPU, thus providing higher performance. A DMA transaction
can be achieved between device to memory, device to device, or memory to
memory.
The bus_dma API is a bus, device, and machine-independent (MI) interface
to DMA mechanisms. It provides the client with flexibility and
simplicity by abstracting machine dependent issues like setting up DMA
mappings, handling cache issues, bus specific features and limitations.
OVERVIEW
A tag structure (bus_dma_tag_t) is used to describe the properties of a
group of related DMA transactions. One way to view this is that a tag
describes the limitations of a DMA engine. For example, if a DMA engine
in a device is limited to 32-bit addresses, that limitation is specified
by a parameter when creating the tag for that device. Similarly, a tag
can be marked as requiring buffers whose addresses are aligned to a
specific boundary.
Some devices may require multiple tags to describe DMA transactions with
differing properties. For example, a device might require 16-byte
alignment of its descriptor ring while permitting arbitrary alignment of
I/O buffers. In this case, the driver must create one tag for the
descriptor ring and a separate tag for I/O buffers. If a device has
restrictions that are common to all DMA transactions in addition to
region for DMA. On systems with I/O MMUs, the mapping structure tracks
any I/O MMU entries used by a request. For DMA requests that require
bounce pages, the mapping tracks the bounce pages used.
To prepare for one or more DMA transactions, a mapping must be bound to a
memory region by calling one of the bus_dmamap_load() functions. These
functions configure the mapping which can include programming entries in
an I/O MMU and/or allocating bounce pages. An output of these functions
(either directly or indirectly by invoking a callback routine) is the
list of scatter/gather address ranges a consumer can pass to a DMA engine
to access the memory region. When a mapping is no longer needed, the
mapping must be unloaded via bus_dmamap_unload().
Before and after each DMA transaction, bus_dmamap_sync() must be used to
ensure that the correct data is used by the DMA engine and the CPU. If a
mapping uses bounce pages, the sync operations copy data between the
bounce pages and the memory region bound to the mapping. Sync operations
also handle architecture-specific details such as CPU cache flushing and
CPU memory operation ordering.
STATIC VS DYNAMIC
bus_dma handles two types of DMA transactions: static and dynamic.
Static transactions are used with a long-lived memory region that is
reused for many transactions such as a descriptor ring. Dynamic
transactions are used for transfers to or from transient buffers such as
I/O buffers holding a network packet or disk block. Each transaction
type uses a different subset of the bus_dma API.
Static Transactions
Static transactions use memory regions allocated by bus_dma. Each static
memory region is allocated by calling bus_dmamem_alloc(). This function
requires a valid tag describing the properties of the DMA transactions to
this region such as alignment or address restrictions. Multiple regions
can share a single tag if they share the same restrictions.
bus_dmamem_alloc() allocates a memory region along with a mapping object.
The associated tag, memory region, and mapping object must then be passed
to bus_dmamap_load() to bind the mapping to the allocated region and
obtain the scatter/gather list.
It is expected that bus_dmamem_alloc() will attempt to allocate memory
requiring less expensive sync operations (for example, implementations
should not allocate regions requiring bounce pages), but sync operations
should still be used. For example, a driver should use bus_dmamap_sync()
in an interrupt handler before reading descriptor ring entries written by
the device prior to the interrupt.
When a consumer is finished with a memory region, it should unload the
mapping via bus_dmamap_unload() and then release the memory region and
mapping object via bus_dmamem_free().
Dynamic Transactions
Dynamic transactions map memory regions provided by other parts of the
system. A tag must be created via bus_dma_tag_create() to describe the
DMA transactions to and from these memory regions, and a pool of mapping
objects must be allocated via bus_dmamap_create() to track the mappings
of any in-flight transactions.
When a consumer wishes to schedule a transaction for a memory region, the
then be unloaded via bus_dmamap_unload(), and the mapping object can be
returned to the pool of unused mapping objects.
When a consumer is no longer scheduling DMA transactions, the mapping
objects should be freed via bus_dmamap_destroy(), and the tag should be
freed via bus_dma_tag_destroy().
STRUCTURES AND TYPES
bus_dma_tag_t
A machine-dependent (MD) opaque type that describes the
characteristics of a group of DMA transactions. DMA tags are
organized into a hierarchy, with each child tag inheriting the
restrictions of its parent. This allows all devices along the
path of DMA transactions to contribute to the constraints of
those transactions.
bus_dma_template_t
A template is a structure for creating a bus_dma_tag_t from a set
of defaults. Once initialized with bus_dma_template_init(), a
driver can over-ride individual fields to suit its needs. The
following fields start with the indicated default values:
alignment 1
boundary 0
lowaddr BUS_SPACE_MAXADDR
highaddr BUS_SPACE_MAXADDR
maxsize BUS_SPACE_MAXSIZE
nsegments BUS_SPACE_UNRESTRICTED
maxsegsize BUS_SPACE_MAXSIZE
flags 0
lockfunc NULL
lockfuncarg NULL
Descriptions of each field are documented with
bus_dma_tag_create(). Note that the filtfunc and filtfuncarg
attributes of the DMA tag are not supported with templates.
bus_dma_filter_t
Client specified address filter having the format:
int client_filter(void *filtarg, bus_addr_t testaddr)
Address filters can be specified during tag creation to allow for
devices whose DMA address restrictions cannot be specified by a
single window. The filtarg argument is specified by the client
during tag creation to be passed to all invocations of the
callback. The testaddr argument contains a potential starting
address of a DMA mapping. The filter function operates on the
set of addresses from testaddr to `trunc_page(testaddr) +
PAGE_SIZE - 1', inclusive. The filter function should return
zero if any mapping in this range can be accommodated by the
device and non-zero otherwise.
Note: The use of filters is deprecated. Proper operation is not
guaranteed.
bus_dma_segment_t
A machine-dependent type that describes individual DMA segments.
It contains the following fields:
to all restrictions necessary for a successful DMA operation,
some conversion (e.g. a conversion from host byte order to the
device's byte order) is almost always required when presenting
segment information to the device.
bus_dmamap_t
A machine-dependent opaque type describing an individual mapping.
One map is used for each memory allocation that will be loaded.
Maps can be reused once they have been unloaded. Multiple maps
can be associated with one DMA tag. While the value of the map
may evaluate to NULL on some platforms under certain conditions,
it should never be assumed that it will be NULL in all cases.
bus_dmamap_callback_t
Client specified callback for receiving mapping information
resulting from the load of a bus_dmamap_t via bus_dmamap_load(),
bus_dmamap_load_bio(), bus_dmamap_load_ccb(),
bus_dmamap_load_crp(), or bus_dmamap_load_crp_buffer().
Callbacks are of the format:
void client_callback(void *callback_arg, bus_dma_segment_t
*segs, int nseg, int error)
The callback_arg is the callback argument passed to dmamap load
functions. The segs and nseg arguments describe an array of
bus_dma_segment_t structures that represent the mapping. This
array is only valid within the scope of the callback function.
The success or failure of the mapping is indicated by the error
argument. More information on the use of callbacks can be found
in the description of the individual dmamap load functions.
bus_dmamap_callback2_t
Client specified callback for receiving mapping information
resulting from the load of a bus_dmamap_t via
bus_dmamap_load_uio() or bus_dmamap_load_mbuf().
Callback2s are of the format:
void client_callback2(void *callback_arg, bus_dma_segment_t
*segs, int nseg, bus_size_t mapsize, int error)
Callback2's behavior is the same as bus_dmamap_callback_t with
the addition that the length of the data mapped is provided via
mapsize.
bus_dmasync_op_t
Memory synchronization operation specifier. Bus DMA requires
explicit synchronization of memory with its device visible
mapping in order to guarantee memory coherency. The
bus_dmasync_op_t allows the type of DMA operation that will be or
has been performed to be communicated to the system so that the
correct coherency measures are taken. The operations are
represented as bitfield flags that can be combined together,
though it only makes sense to combine PRE flags or POST flags,
not both. See the bus_dmamap_sync() description below for more
details on how to use these operations.
All operations specified below are performed from the host memory
point of view, where a read implies data coming from the device
to an update of host memory by the device.
BUS_DMASYNC_PREWRITE Perform any synchronization required after
an update of host memory by the CPU and
prior to device access to host memory.
BUS_DMASYNC_POSTREAD Perform any synchronization required after
an update of host memory by the device and
prior to CPU access to host memory.
BUS_DMASYNC_POSTWRITE Perform any synchronization required after
device access to host memory.
bus_dma_lock_t
Client specified lock/mutex manipulation method. This will be
called from within busdma whenever a client lock needs to be
manipulated. In its current form, the function will be called
immediately before the callback for a DMA load operation that has
been deferred with BUS_DMA_LOCK and immediately after with
BUS_DMA_UNLOCK. If the load operation does not need to be
deferred, then it will not be called since the function loading
the map should be holding the appropriate locks. This method is
of the format:
void lockfunc(void *lockfunc_arg, bus_dma_lock_op_t op)
The lockfuncarg argument is specified by the client during tag
creation to be passed to all invocations of the callback. The op
argument specifies the lock operation to perform.
Two lockfunc implementations are provided for convenience.
busdma_lock_mutex() performs standard mutex operations on the
sleep mutex provided via lockfuncarg. dflt_lock() will generate
a system panic if it is called. It is substituted into the tag
when lockfunc is passed as NULL to bus_dma_tag_create() and is
useful for tags that should not be used with deferred load
operations.
bus_dma_lock_op_t
Operations to be performed by the client-specified lockfunc().
BUS_DMA_LOCK Acquires and/or locks the client locking
primitive.
BUS_DMA_UNLOCK Releases and/or unlocks the client locking
primitive.
FUNCTIONS
bus_dma_tag_create(parent, alignment, boundary, lowaddr, highaddr,
*filtfunc, *filtfuncarg, maxsize, nsegments, maxsegsz, flags,
lockfunc, lockfuncarg, *dmat)
Allocates a DMA tag, and initializes it according to the
arguments provided:
parent A parent tag from which to inherit restrictions.
The restrictions passed in other arguments can only
further tighten the restrictions inherited from the
parent tag.
power of 2. Hardware that can DMA starting at any
address would specify 1 for byte alignment.
Hardware requiring DMA transfers to start on a
multiple of 4K would specify 4096.
boundary Boundary constraint, in bytes, of the target DMA
memory region. The boundary indicates the set of
addresses, all multiples of the boundary argument,
that cannot be crossed by a single
bus_dma_segment_t. The boundary must be a power of
2 and must be no smaller than the maximum segment
size. `0' indicates that there are no boundary
restrictions.
lowaddr, highaddr
Bounds of the window of bus address space that
cannot be directly accessed by the device. The
window contains all addresses greater than lowaddr
and less than or equal to highaddr. For example, a
device incapable of DMA above 4GB, would specify a
highaddr of BUS_SPACE_MAXADDR and a lowaddr of
BUS_SPACE_MAXADDR_32BIT. Similarly a device that
can only perform DMA to addresses below 16MB would
specify a highaddr of BUS_SPACE_MAXADDR and a
lowaddr of BUS_SPACE_MAXADDR_24BIT. Some
implementations require that some region of device
visible address space, overlapping available host
memory, be outside the window. This area of `safe
memory' is used to bounce requests that would
otherwise conflict with the exclusion window.
filtfunc Optional filter function (may be NULL) to be called
for any attempt to map memory into the window
described by lowaddr and highaddr. A filter
function is only required when the single window
described by lowaddr and highaddr cannot adequately
describe the constraints of the device. The filter
function will be called for every machine page that
overlaps the exclusion window.
Note: The use of filters is deprecated. Proper
operation is not guaranteed.
filtfuncarg Argument passed to all calls to the filter function
for this tag. May be NULL.
maxsize Maximum size, in bytes, of the sum of all segment
lengths in a given DMA mapping associated with this
tag.
nsegments Number of discontinuities (scatter/gather segments)
allowed in a DMA mapped region.
maxsegsz Maximum size, in bytes, of a segment in any DMA
mapped region associated with dmat.
flags Are as follows:
BUS_DMA_ALLOCNOW Pre-allocate enough resources to
bus_dmamem_alloc(). Also, due to
resource sharing with other tags,
this flag does not guarantee that
resources will be allocated or
reserved exclusively for this tag.
It should be treated only as a
minor optimization.
BUS_DMA_COHERENT Indicate that the DMA engine and
CPU are cache-coherent. Cached
memory may be used to back
allocations created by
bus_dmamem_alloc(). For
bus_dma_tag_create(), the
BUS_DMA_COHERENT flag is currently
implemented on arm64.
lockfunc Optional lock manipulation function (may be NULL) to
be called when busdma needs to manipulate a lock on
behalf of the client. If NULL is specified,
dflt_lock() is used.
lockfuncarg Optional argument to be passed to the function
specified by lockfunc.
dmat Pointer to a bus_dma_tag_t where the resulting DMA
tag will be stored.
Returns ENOMEM if sufficient memory is not available for tag
creation or allocating mapping resources.
bus_dma_tag_destroy(dmat)
Deallocate the DMA tag dmat that was created by
bus_dma_tag_create().
Returns EBUSY if any DMA maps remain associated with dmat or `0'
on success.
bus_dma_template_init(*template, parent)
Initializes a bus_dma_template_t structure. If the parent
argument is non-NULL, this parent tag is associated with the
template and will be compiled into the dma tag that is later
created. The values of the parent are not copied into the
template. During tag creation in bus_dma_tag_template(), any
parameters from the parent tag that are more restrictive than
what is in the provided template will overwrite what goes into
the new tag.
bus_dma_template_tag(*template, *dmat)
Unpacks a template into a tag, and returns the tag via the dmat.
All return values are identical to bus_dma_tag_create(). The
template is not modified by this function, and can be reused
and/or freed upon return.
bus_dma_template_clone(*template, dmat)
Copies the fields from an existing tag to a template. The
template does not need to be initialized first. All of its
fields will be overwritten by the values contained in the tag.
When paired with bus_dma_template_tag(), this function is useful
BUS_DMA_TEMPLATE_FILL(*template, param ...)
Fills in the selected fields of the template with a variable
number of key-value parameters. The macros listed below take an
argument of the specified type and encapsulate it into a key-
value structure that is directly usable as a parameter argument.
Muliple parameters may be provided at once.
BD_PARENT() void *
BD_ALIGNMENT() uintmax_t
BD_BOUNDARY() uintmax_t
BD_LOWADDR() vm_paddr_t
BD_HIGHADDR() vm_paddr_t
BD_MAXSIZE() uintmax_t
BD_NSEGMENTS() uintmax_t
BD_MAXSEGSIZE() uintmax_t
BD_FLAGS() uintmax_t
BD_LOCKFUNC() void *
BD_LOCKFUNCARG() void *
bus_dmamap_create(dmat, flags, *mapp)
Allocates and initializes a DMA map. Arguments are as follows:
dmat DMA tag.
flags Are as follows:
BUS_DMA_COHERENT Attempt to map the memory loaded
with this map such that cache sync
operations are as cheap as possible.
This flag is typically set on maps
when the memory loaded with these
will be accessed by both a CPU and a
DMA engine, frequently such as
control data and as opposed to
streamable data such as receive and
transmit buffers. Use of this flag
does not remove the requirement of
using bus_dmamap_sync(), but it may
reduce the cost of performing these
operations.
mapp Pointer to a bus_dmamap_t where the resulting DMA map
will be stored.
Returns ENOMEM if sufficient memory is not available for creating
the map or allocating mapping resources.
bus_dmamap_destroy(dmat, map)
Frees all resources associated with a given DMA map. Arguments
are as follows:
dmat DMA tag used to allocate map.
map The DMA map to destroy.
Returns EBUSY if a mapping is still active for map.
bus_dmamap_load(dmat, map, buf, buflen, *callback, callback_arg, flags)
Creates a mapping in device visible address space of buflen bytes
buf A kernel virtual address pointer to a contiguous (in KVA)
buffer, to be mapped into device visible address space.
buflen The size of the buffer.
callback callback_arg
The callback function, and its argument. This function
is called once sufficient mapping resources are available
for the DMA operation. If resources are temporarily
unavailable, this function will be deferred until later,
but the load operation will still return immediately to
the caller. Thus, callers should not assume that the
callback will be called before the load returns, and code
should be structured appropriately to handle this. See
below for specific flags and error codes that control
this behavior.
flags Are as follows:
BUS_DMA_NOWAIT The load should not be deferred in case
of insufficient mapping resources, and
instead should return immediately with an
appropriate error.
BUS_DMA_NOCACHE
The generated transactions to and from
the virtual page are non-cacheable.
Return values to the caller are as follows:
0 The callback has been called and completed. The
status of the mapping has been delivered to the
callback.
EINPROGRESS The mapping has been deferred for lack of resources.
The callback will be called as soon as resources are
available. Callbacks are serviced in FIFO order.
Note that subsequent load operations for the same
tag that do not require extra resources will still
succeed. This may result in out-of-order processing
of requests. If the caller requires the order of
requests to be preserved, then the caller is
required to stall subsequent requests until a
pending request's callback is invoked.
ENOMEM The load request has failed due to insufficient
resources, and the caller specifically used the
BUS_DMA_NOWAIT flag.
EINVAL The load request was invalid. The callback has been
called and has been provided the same error. This
error value may indicate that dmat, map, buf, or
callback were invalid, or buflen was larger than the
maxsize argument used to create the dma tag dmat.
When the callback is called, it is presented with an error value
indicating the disposition of the mapping. Error may be one of
EFBIG A mapping could not be achieved within the segment
constraints provided in the tag even though the
requested allocation size was less than maxsize.
bus_dmamap_load_bio(dmat, map, bio, callback, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps buffers
pointed to by bio for DMA transfers. bio may point to either a
mapped or unmapped buffer.
bus_dmamap_load_ccb(dmat, map, ccb, callback, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps data pointed
to by ccb for DMA transfers. The data for ccb may be any of the
following types:
CAM_DATA_VADDR The data is a single KVA buffer.
CAM_DATA_PADDR The data is a single bus address range.
CAM_DATA_SG The data is a scatter/gather list of KVA
buffers.
CAM_DATA_SG_PADDR The data is a scatter/gather list of bus
address ranges.
CAM_DATA_BIO The data is contained in a struct bio attached
to the CCB.
bus_dmamap_load_ccb() supports the following CCB XPT function
codes:
XPT_ATA_IO
XPT_CONT_TARGET_IO
XPT_SCSI_IO
bus_dmamap_load_crp(dmat, map, crp, callback, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps the input
buffer pointed to by crp for DMA transfers. The BUS_DMA_NOWAIT
flag is implied, thus no callback deferral will happen.
bus_dmamap_load_crp_buffer(dmat, map, cb, callback, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps the crypto
data buffer pointed to by cb for DMA transfers. The
BUS_DMA_NOWAIT flag is implied, thus no callback deferral will
happen.
bus_dmamap_load_mbuf(dmat, map, mbuf, callback2, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps mbuf chains
for DMA transfers. A bus_size_t argument is also passed to the
callback routine, which contains the mbuf chain's packet header
length. The BUS_DMA_NOWAIT flag is implied, thus no callback
deferral will happen.
Mbuf chains are assumed to be in kernel virtual address space.
Beside the error values listed for bus_dmamap_load(), EINVAL will
be returned if the size of the mbuf chain exceeds the maximum
limit of the DMA tag.
bus_dmamap_load_mbuf_sg(dmat, map, mbuf, segs, nsegs, flags)
bus_dmamap_load_uio(dmat, map, uio, callback2, callback_arg, flags)
This is a variation of bus_dmamap_load() which maps buffers
pointed to by uio for DMA transfers. A bus_size_t argument is
also passed to the callback routine, which contains the size of
uio, i.e. uio->uio_resid. The BUS_DMA_NOWAIT flag is implied,
thus no callback deferral will happen. Returns the same errors
as bus_dmamap_load().
If uio->uio_segflg is UIO_USERSPACE, then it is assumed that the
buffer, uio is in uio->uio_td->td_proc's address space. User
space memory must be in-core and wired prior to attempting a map
load operation. Pages may be locked using vslock(9).
bus_dmamap_unload(dmat, map)
Unloads a DMA map. Arguments are as follows:
dmat DMA tag used to allocate map.
map The DMA map that is to be unloaded.
bus_dmamap_unload() will not perform any implicit synchronization
of DMA buffers. This must be done explicitly by a call to
bus_dmamap_sync() prior to unloading the map.
bus_dmamap_sync(dmat, map, op)
Performs synchronization of a device visible mapping with the CPU
visible memory referenced by that mapping. Arguments are as
follows:
dmat DMA tag used to allocate map.
map The DMA mapping to be synchronized.
op Type of synchronization operation to perform. See the
definition of bus_dmasync_op_t for a description of the
acceptable values for op.
The bus_dmamap_sync() function is the method used to ensure that
CPU's and device's direct memory access (DMA) to shared memory is
coherent. For example, the CPU might be used to set up the
contents of a buffer that is to be made available to a device.
To ensure that the data are visible via the device's mapping of
that memory, the buffer must be loaded and a DMA sync operation
of BUS_DMASYNC_PREWRITE must be performed after the CPU has
updated the buffer and before the device access is initiated. If
the CPU modifies this buffer again later, another
BUS_DMASYNC_PREWRITE sync operation must be performed before an
additional device access. Conversely, suppose a device updates
memory that is to be read by a CPU. In this case, the buffer
must be loaded, and a DMA sync operation of BUS_DMASYNC_PREREAD
must be performed before the device access is initiated. The CPU
will only be able to see the results of this memory update once
the DMA operation has completed and a BUS_DMASYNC_POSTREAD sync
operation has been performed.
If read and write operations are not preceded and followed by the
appropriate synchronization operations, behavior is undefined.
bus_dmamem_alloc(dmat, **vaddr, flags, *mapp)
mapping of the allocated region.
flags Flags are defined as follows:
BUS_DMA_WAITOK The routine can safely wait (sleep)
for resources.
BUS_DMA_NOWAIT The routine is not allowed to wait for
resources. If resources are not
available, ENOMEM is returned.
BUS_DMA_COHERENT
Attempt to map this memory in a
coherent fashion. See
bus_dmamap_create() above for a
description of this flag. For
bus_dmamem_alloc(), the
BUS_DMA_COHERENT flag is currently
implemented on arm and arm64.
BUS_DMA_ZERO Causes the allocated memory to be set
to all zeros.
BUS_DMA_NOCACHE
The allocated memory will not be
cached in the processor caches. All
memory accesses appear on the bus and
are executed without reordering. For
bus_dmamem_alloc(), the
BUS_DMA_NOCACHE flag is currently
implemented on amd64 and i386 where it
results in the Strong Uncacheable PAT
to be set for the allocated virtual
address range.
mapp Pointer to a bus_dmamap_t where the resulting DMA map
will be stored.
The size of memory to be allocated is maxsize as specified in the
call to bus_dma_tag_create() for dmat.
The current implementation of bus_dmamem_alloc() will allocate
all requests as a single segment.
An initial load operation is required to obtain the bus address
of the allocated memory, and an unload operation is required
before freeing the memory, as described below in
bus_dmamem_free(). Maps are automatically handled by this
function and should not be explicitly allocated or destroyed.
Although an explicit load is not required for each access to the
memory referenced by the returned map, the synchronization
requirements as described in the bus_dmamap_sync() section still
apply and should be used to achieve portability on architectures
without coherent buses.
Returns ENOMEM if sufficient memory is not available for
completing the operation.
map DMA map to be invalidated.
RETURN VALUES
Behavior is undefined if invalid arguments are passed to any of the above
functions. If sufficient resources cannot be allocated for a given
transaction, ENOMEM is returned. All routines that are not of type void
will return 0 on success or an error code on failure as discussed above.
All void routines will succeed if provided with valid arguments.
LOCKING
Two locking protocols are used by bus_dma. The first is a private global
lock that is used to synchronize access to the bounce buffer pool on the
architectures that make use of them. This lock is strictly a leaf lock
that is only used internally to bus_dma and is not exposed to clients of
the API.
The second protocol involves protecting various resources stored in the
tag. Since almost all bus_dma operations are done through requests from
the driver that created the tag, the most efficient way to protect the
tag resources is through the lock that the driver uses. In cases where
bus_dma acts on its own without being called by the driver, the lock
primitive specified in the tag is acquired and released automatically.
An example of this is when the bus_dmamap_load() callback function is
called from a deferred context instead of the driver context. This means
that certain bus_dma functions must always be called with the same lock
held that is specified in the tag. These functions include:
bus_dmamap_load()
bus_dmamap_load_bio()
bus_dmamap_load_ccb()
bus_dmamap_load_mbuf()
bus_dmamap_load_mbuf_sg()
bus_dmamap_load_uio()
bus_dmamap_unload()
bus_dmamap_sync()
There is one exception to this rule. It is common practice to call some
of these functions during driver start-up without any locks held. So
long as there is a guarantee of no possible concurrent use of the tag by
different threads during this operation, it is safe to not hold a lock
for these functions.
Certain bus_dma operations should not be called with the driver lock
held, either because they are already protected by an internal lock, or
because they might sleep due to memory or resource allocation. The
following functions must not be called with any non-sleepable locks held:
bus_dma_tag_create()
bus_dmamap_create()
bus_dmamem_alloc()
All other functions do not have a locking protocol and can thus be called
with or without any system or driver locks held.
SEE ALSO
devclass(9), device(9), driver(9), rman(9), vslock(9)
The bus_dma API was adopted from NetBSD for use in the CAM SCSI
subsystem. The alterations to the original API were aimed to remove the
need for a bus_dma_segment_t array stored in each bus_dmamap_t while
allowing callers to queue up on scarce resources.
AUTHORS
The bus_dma interface was designed and implemented by Jason R. Thorpe of
the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
Additional input on the bus_dma design was provided by Chris Demetriou,
Charles Hannum, Ross Harvey, Matthew Jacob, Jonathan Stone, and Matt
Thomas.
The bus_dma interface in FreeBSD benefits from the contributions of
Justin T. Gibbs, Peter Wemm, Doug Rabson, Matthew N. Dodd, Sam Leffler,
Maxime Henrion, Jake Burkholder, Takahashi Yoshihiro, Scott Long and many
others.
This manual page was written by Hiten M. Pandya and Justin T. Gibbs.
FreeBSD 14.0-RELEASE-p11 May 25, 2020 FreeBSD 14.0-RELEASE-p11