
NAME
MemGuard - memory allocator for debugging purposes

SYNOPSIS
options DEBUG_MEMGUARD

DESCRIPTION
MemGuard is a simple and small replacement memory allocator designed to help detect tamper-after-

free scenarios. These problems are more and more common and likely with multithreaded kernels

where race conditions are more prevalent.

MemGuard can take over malloc(), realloc() and free() for a single malloc type. Alternatively

MemGuard can take over uma_zalloc(), uma_zalloc_arg() and uma_free() for a single uma(9) zone.

Also MemGuard can guard all allocations larger than PAGE_SIZE, and can guard a random fraction of

all allocations. There is also a knob to prevent allocations smaller than a specified size from being

guarded, to limit memory waste.

EXAMPLES
To use MemGuard for a memory type, either add an entry to /boot/loader.conf:

vm.memguard.desc=<memory_type>

Or set the vm.memguard.desc sysctl(8) variable at run-time:

sysctl vm.memguard.desc=<memory_type>

Where memory_type can be either a short description of the memory type to monitor, either name of

uma(9) zone. Only allocations from that memory_type made after vm.memguard.desc is set will

potentially be guarded. If vm.memguard.desc is modified at run-time then only allocations of the new

memory_type will potentially be guarded once the sysctl(8) is set. Existing guarded allocations will still

be properly released by either free(9) or uma_zfree(9), depending on what kind of allocation was taken

over.

To determine short description of a malloc(9) type one can either take it from the first column of

vmstat(8) -m output, or to find it in the kernel source. It is the second argument to

MALLOC_DEFINE(9) macro. To determine name of uma(9) zone one can either take it from the first

column of vmstat(8) -z output, or to find it in the kernel source. It is the first argument to the

uma_zcreate(9) function.

The vm.memguard.divisor boot-time tunable is used to scale how much of the system’s physical

MEMGUARD(9) FreeBSD Kernel Developer’s Manual MEMGUARD(9)

FreeBSD 14.0-RELEASE-p11 March 22, 2017 FreeBSD 14.0-RELEASE-p11



memory MemGuard is allowed to consume. The default is 10, so up to vm_cnt.v_page_count/10 pages

can be used. MemGuard will reserve vm_kmem_max / vm.memguard.divisor bytes of virtual address

space, limited by twice the physical memory size. The physical limit is reported as

vm.memguard.phys_limit and the virtual space reserved for MemGuard is reported as

vm.memguard.mapsize.

MemGuard will not do page promotions for any allocation smaller than vm.memguard.minsize bytes.

The default is 0, meaning all allocations can potentially be guarded. MemGuard can guard sufficiently

large allocations randomly, with average frequency of every one in 100000 / vm.memguard.frequency

allocations. The default is 0, meaning no allocations are randomly guarded.

MemGuard can optionally add unmapped guard pages around each allocation to detect overflow and

underflow, if vm.memguard.options has the 1 bit set. This option is enabled by default. MemGuard will

optionally guard all allocations of PAGE_SIZE or larger if vm.memguard.options has the 2 bit set. This

option is off by default. By default MemGuard does not guard uma(9) zones that have been initialized

with the UMA_ZONE_NOFREE flag set, since it can produce false positives on them. However, this

safety measure can be turned off by setting bit 3 of the vm.memguard.options tunable.

SEE ALSO
sysctl(8), vmstat(8), contigmalloc(9), malloc(9), redzone(9), uma(9)

HISTORY
MemGuard first appeared in FreeBSD 6.0.

AUTHORS
MemGuard was originally written by Bosko Milekic <bmilekic@FreeBSD.org>. This manual page was

originally written by Christian Brueffer <brueffer@FreeBSD.org>. Additions have been made by

Matthew Fleming <mdf@FreeBSD.org> and Gleb Smirnoff <glebius@FreeBSD.org> to both the

implementation and the documentation.

MEMGUARD(9) FreeBSD Kernel Developer’s Manual MEMGUARD(9)

FreeBSD 14.0-RELEASE-p11 March 22, 2017 FreeBSD 14.0-RELEASE-p11


