
NAME
mmap - allocate memory, or map files or devices into memory

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

void *

mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);

DESCRIPTION
The mmap() system call causes the pages starting at addr and continuing for at most len bytes to be

mapped from the object described by fd, starting at byte offset offset. If len is not a multiple of the page

size, the mapped region may extend past the specified range. Any such extension beyond the end of the

mapped object will be zero-filled.

If fd references a regular file or a shared memory object, the range of bytes starting at offset and

continuing for len bytes must be legitimate for the possible (not necessarily current) offsets in the object.

In particular, the offset value cannot be negative. If the object is truncated and the process later accesses

a page that is wholly within the truncated region, the access is aborted and a SIGBUS signal is delivered

to the process.

If fd references a device file, the interpretation of the offset value is device specific and defined by the

device driver. The virtual memory subsystem does not impose any restrictions on the offset value in this

case, passing it unchanged to the driver.

If addr is non-zero, it is used as a hint to the system. (As a convenience to the system, the actual address

of the region may differ from the address supplied.) If addr is zero, an address will be selected by the

system. The actual starting address of the region is returned. A successful mmap deletes any previous

mapping in the allocated address range.

The protections (region accessibility) are specified in the prot argument by or’ing the following values:

PROT_NONE Pages may not be accessed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_EXEC Pages may be executed.

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



In addition to these protection flags, FreeBSD provides the ability to set the maximum protection of a

region allocated by mmap and later altered by mprotect(2). This is accomplished by or’ing one or more

PROT_ values wrapped in the PROT_MAX() macro into the prot argument.

The flags argument specifies the type of the mapped object, mapping options and whether modifications

made to the mapped copy of the page are private to the process or are to be shared with other references.

Sharing, mapping type and options are specified in the flags argument by or’ing the following values:

MAP_32BIT Request a region in the first 2GB of the current process’s address space. If

a suitable region cannot be found, mmap() will fail.

MAP_ALIGNED(n) Align the region on a requested boundary. If a suitable region cannot be

found, mmap() will fail. The n argument specifies the binary logarithm of

the desired alignment.

MAP_ALIGNED_SUPER Align the region to maximize the potential use of large ("super") pages. If a

suitable region cannot be found, mmap() will fail. The system will choose a

suitable page size based on the size of mapping. The page size used as well

as the alignment of the region may both be affected by properties of the file

being mapped. In particular, the physical address of existing pages of a file

may require a specific alignment. The region is not guaranteed to be

aligned on any specific boundary.

MAP_ANON Map anonymous memory not associated with any specific file. The file

descriptor used for creating MAP_ANON must be -1. The offset argument

must be 0.

MAP_ANONYMOUS This flag is identical to MAP_ANON and is provided for compatibility.

MAP_EXCL This flag can only be used in combination with MAP_FIXED. Please see

the definition of MAP_FIXED for the description of its effect.

MAP_FIXED Do not permit the system to select a different address than the one specified.

If the specified address cannot be used, mmap() will fail. If MAP_FIXED

is specified, addr must be a multiple of the page size. If MAP_EXCL is not

specified, a successful MAP_FIXED request replaces any previous

mappings for the process’ pages in the range from addr to addr + len. In

contrast, if MAP_EXCL is specified, the request will fail if a mapping

already exists within the range.

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



MAP_GUARD Instead of a mapping, create a guard of the specified size. Guards allow a

process to create reservations in its address space, which can later be

replaced by actual mappings.

mmap will not create mappings in the address range of a guard unless the

request specifies MAP_FIXED. Guards can be destroyed with munmap(2).

Any memory access by a thread to the guarded range results in the delivery

of a SIGSEGV signal to that thread.

MAP_NOCORE Region is not included in a core file.

MAP_NOSYNC Causes data dirtied via this VM map to be flushed to physical media only

when necessary (usually by the pager) rather than gratuitously. Typically

this prevents the update daemons from flushing pages dirtied through such

maps and thus allows efficient sharing of memory across unassociated

processes using a file-backed shared memory map. Without this option any

VM pages you dirty may be flushed to disk every so often (every 30-60

seconds usually) which can create performance problems if you do not need

that to occur (such as when you are using shared file-backed mmap regions

for IPC purposes). Dirty data will be flushed automatically when all

mappings of an object are removed and all descriptors referencing the

object are closed. Note that VM/file system coherency is maintained

whether you use MAP_NOSYNC or not. This option is not portable across

UNIX platforms (yet), though some may implement the same behavior by

default.

WARNING! Extending a file with ftruncate(2), thus creating a big hole,

and then filling the hole by modifying a shared mmap() can lead to severe

file fragmentation. In order to avoid such fragmentation you should always

pre-allocate the file’s backing store by write()ing zero’s into the newly

extended area prior to modifying the area via your mmap(). The

fragmentation problem is especially sensitive to MAP_NOSYNC pages,

because pages may be flushed to disk in a totally random order.

The same applies when using MAP_NOSYNC to implement a file-based

shared memory store. It is recommended that you create the backing store

by write()ing zero’s to the backing file rather than ftruncate()ing it. You

can test file fragmentation by observing the KB/t (kilobytes per transfer)

results from an "iostat 1" while reading a large file sequentially, e.g., using

"dd if=filename of=/dev/null bs=32k".

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



The fsync(2) system call will flush all dirty data and metadata associated

with a file, including dirty NOSYNC VM data, to physical media. The

sync(8) command and sync(2) system call generally do not flush dirty

NOSYNC VM data. The msync(2) system call is usually not needed since

BSD implements a coherent file system buffer cache. However, it may be

used to associate dirty VM pages with file system buffers and thus cause

them to be flushed to physical media sooner rather than later.

MAP_PREFAULT_READ Immediately update the calling process’s lowest-level virtual address

translation structures, such as its page table, so that every memory resident

page within the region is mapped for read access. Ordinarily these

structures are updated lazily. The effect of this option is to eliminate any

soft faults that would otherwise occur on the initial read accesses to the

region. Although this option does not preclude prot from including

PROT_WRITE, it does not eliminate soft faults on the initial write accesses

to the region.

MAP_PRIVATE Modifications are private.

MAP_SHARED Modifications are shared.

MAP_STACK Creates both a mapped region that grows downward on demand and an

adjoining guard that both reserves address space for the mapped region to

grow into and limits the mapped region’s growth. Together, the mapped

region and the guard occupy len bytes of the address space. The guard

starts at the returned address, and the mapped region ends at the returned

address plus len bytes. Upon access to the guard, the mapped region

automatically grows in size, and the guard shrinks by an equal amount.

Essentially, the boundary between the guard and the mapped region moves

downward so that the access falls within the enlarged mapped region.

However, the guard will never shrink to less than the number of pages

specified by the sysctl security.bsd.stack_guard_page, thereby ensuring that

a gap for detecting stack overflow always exists between the downward

growing mapped region and the closest mapped region beneath it.

MAP_STACK implies MAP_ANON and offset of 0. The fd argument

must be -1 and prot must include at least PROT_READ and

PROT_WRITE. The size of the guard, in pages, is specified by sysctl

security.bsd.stack_guard_page.

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



The close(2) system call does not unmap pages, see munmap(2) for further information.

NOTES
Although this implementation does not impose any alignment restrictions on the offset argument, a

portable program must only use page-aligned values.

Large page mappings require that the pages backing an object be aligned in matching blocks in both the

virtual address space and RAM. The system will automatically attempt to use large page mappings

when mapping an object that is already backed by large pages in RAM by aligning the mapping request

in the virtual address space to match the alignment of the large physical pages. The system may also use

large page mappings when mapping portions of an object that are not yet backed by pages in RAM. The

MAP_ALIGNED_SUPER flag is an optimization that will align the mapping request to the size of a

large page similar to MAP_ALIGNED, except that the system will override this alignment if an object

already uses large pages so that the mapping will be consistent with the existing large pages. This flag is

mostly useful for maximizing the use of large pages on the first mapping of objects that do not yet have

pages present in RAM.

RETURN VALUES
Upon successful completion, mmap() returns a pointer to the mapped region. Otherwise, a value of

MAP_FAILED is returned and errno is set to indicate the error.

ERRORS
The mmap() system call will fail if:

[EACCES] The flag PROT_READ was specified as part of the prot argument and fd was not

open for reading. The flags MAP_SHARED and PROT_WRITE were specified

as part of the flags and prot argument and fd was not open for writing.

[EBADF] The fd argument is not a valid open file descriptor.

[EINVAL] An invalid (negative) value was passed in the offset argument, when fd referenced

a regular file or shared memory.

[EINVAL] An invalid value was passed in the prot argument.

[EINVAL] An undefined option was set in the flags argument.

[EINVAL] Both MAP_PRIVATE and MAP_SHARED were specified.

[EINVAL] None of MAP_ANON, MAP_GUARD, MAP_PRIVATE, MAP_SHARED, or

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



MAP_STACK was specified. At least one of these flags must be included.

[EINVAL] MAP_STACK was specified and len is less than or equal to the guard size.

[EINVAL] MAP_FIXED was specified and the addr argument was not page aligned, or part

of the desired address space resides out of the valid address space for a user

process.

[EINVAL] Both MAP_FIXED and MAP_32BIT were specified and part of the desired

address space resides outside of the first 2GB of user address space.

[EINVAL] The len argument was equal to zero.

[EINVAL] MAP_ALIGNED was specified and the desired alignment was either larger than

the virtual address size of the machine or smaller than a page.

[EINVAL] MAP_ANON was specified and the fd argument was not -1.

[EINVAL] MAP_ANON was specified and the offset argument was not 0.

[EINVAL] Both MAP_FIXED and MAP_EXCL were specified, but the requested region is

already used by a mapping.

[EINVAL] MAP_EXCL was specified, but MAP_FIXED was not.

[EINVAL] MAP_GUARD was specified, but the offset argument was not zero, the fd

argument was not -1, or the prot argument was not PROT_NONE.

[EINVAL] MAP_GUARD was specified together with one of the flags MAP_ANON,

MAP_PREFAULT, MAP_PREFAULT_READ, MAP_PRIVATE,

MAP_SHARED, MAP_STACK.

[ENODEV] MAP_ANON has not been specified and fd did not reference a regular or

character special file.

[ENOMEM] MAP_FIXED was specified and the addr argument was not available.

MAP_ANON was specified and insufficient memory was available.

[ENOTSUP] The prot argument contains protections which are not a subset of the specified

maximum protections.

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11



SEE ALSO
madvise(2), mincore(2), minherit(2), mlock(2), mprotect(2), msync(2), munlock(2), munmap(2),

getpagesize(3), getpagesizes(3)

HISTORY
The mmap system call was first documented in 4.2BSD and implemented in 4.4BSD.

The PROT_MAX functionality was introduced in FreeBSD 13.

MMAP(2) FreeBSD System Calls Manual MMAP(2)

FreeBSD 14.0-RELEASE-p11 August 14, 2023 FreeBSD 14.0-RELEASE-p11


