
NAME
mount_nullfs - mount a loopback file system sub-tree; demonstrate the use of a null file system layer

SYNOPSIS
mount_nullfs [-o options] target mount-point

DESCRIPTION
The mount_nullfs utility creates a nullfs(5) layer, duplicating a sub-tree of the file system name space

under another part of the global file system namespace. This allows existing files and directories to be

accessed using a different pathname.

The primary differences between a virtual copy of the file system and a symbolic link are that the

getcwd(3) functions work correctly in the virtual copy, and that other file systems may be mounted on

the virtual copy without affecting the original. A different device number for the virtual copy is returned

by stat(2), but in other respects it is indistinguishable from the original.

The mount_nullfs utility supports mounting both directories and single files. Both target and

mount_point must be the same type. Mounting directories to files or files to directories is not supported.

The mount_nullfs file system differs from a traditional loopback file system in two respects: it is

implemented using a stackable layers techniques, and its "null-node"s stack above all lower-layer

vnodes, not just over directory vnodes.

The options are as follows:

-o Options are specified with a -o flag followed by a comma separated string of options. See the

mount(8) man page for possible options and their meanings. Additionally the following option is

supported:

nocache
Disable metadata caching in the null layer. Some lower-layer file systems may force this

option. Depending on the access pattern, this may result in increased lock contention.

The null layer has two purposes. First, it serves as a demonstration of layering by providing a layer

which does nothing. (It actually does everything the loopback file system does, which is slightly more

than nothing.) Second, the null layer can serve as a prototype layer. Since it provides all necessary

layer framework, new file system layers can be created very easily by starting with a null layer.

The remainder of this man page examines the null layer as a basis for constructing new layers.

MOUNT_NULLFS(8) FreeBSD System Manager’s Manual MOUNT_NULLFS(8)

FreeBSD 14.0-RELEASE-p11 June 11, 2023 FreeBSD 14.0-RELEASE-p11



INSTANTIATING NEW NULL LAYERS
New null layers are created with mount_nullfs. The mount_nullfs utility takes two arguments, the

pathname of the lower vfs (target-pn) and the pathname where the null layer will appear in the

namespace (mount-point-pn). After the null layer is put into place, the contents of target-pn subtree will

be aliased under mount-point-pn.

OPERATION OF A NULL LAYER
The null layer is the minimum file system layer, simply bypassing all possible operations to the lower

layer for processing there. The majority of its activity centers on the bypass routine, through which

nearly all vnode operations pass.

The bypass routine accepts arbitrary vnode operations for handling by the lower layer. It begins by

examining vnode operation arguments and replacing any null-nodes by their lower-layer equivalents. It

then invokes the operation on the lower layer. Finally, it replaces the null-nodes in the arguments and, if

a vnode is returned by the operation, stacks a null-node on top of the returned vnode.

Although bypass handles most operations, vop_getattr, vop_inactive, vop_reclaim, and vop_print are not

bypassed. Vop_getattr must change the fsid being returned. Vop_inactive and vop_reclaim are not

bypassed so that they can handle freeing null-layer specific data. Vop_print is not bypassed to avoid

excessive debugging information.

INSTANTIATING VNODE STACKS
Mounting associates the null layer with a lower layer, in effect stacking two VFSes. Vnode stacks are

instead created on demand as files are accessed.

The initial mount creates a single vnode stack for the root of the new null layer. All other vnode stacks

are created as a result of vnode operations on this or other null vnode stacks.

New vnode stacks come into existence as a result of an operation which returns a vnode. The bypass

routine stacks a null-node above the new vnode before returning it to the caller.

For example, imagine mounting a null layer with

mount_nullfs /usr/include /dev/layer/null

Changing directory to /dev/layer/null will assign the root null-node (which was created when the null

layer was mounted). Now consider opening sys. A vop_lookup would be done on the root null-node.

This operation would bypass through to the lower layer which would return a vnode representing the

UFS sys. Null_bypass then builds a null-node aliasing the UFS sys and returns this to the caller. Later

operations on the null-node sys will repeat this process when constructing other vnode stacks.

MOUNT_NULLFS(8) FreeBSD System Manager’s Manual MOUNT_NULLFS(8)

FreeBSD 14.0-RELEASE-p11 June 11, 2023 FreeBSD 14.0-RELEASE-p11



CREATING OTHER FILE SYSTEM LAYERS
One of the easiest ways to construct new file system layers is to make a copy of the null layer, rename

all files and variables, and then begin modifying the copy. The sed(1) utility can be used to easily

rename all variables.

The umap layer is an example of a layer descended from the null layer.

INVOKING OPERATIONS ON LOWER LAYERS
There are two techniques to invoke operations on a lower layer when the operation cannot be completely

bypassed. Each method is appropriate in different situations. In both cases, it is the responsibility of the

aliasing layer to make the operation arguments "correct" for the lower layer by mapping a vnode

argument to the lower layer.

The first approach is to call the aliasing layer’s bypass routine. This method is most suitable when you

wish to invoke the operation currently being handled on the lower layer. It has the advantage that the

bypass routine already must do argument mapping. An example of this is null_getattrs in the null layer.

A second approach is to directly invoke vnode operations on the lower layer with the

VOP_OPERATIONNAME interface. The advantage of this method is that it is easy to invoke arbitrary

operations on the lower layer. The disadvantage is that vnode arguments must be manually mapped.

SEE ALSO
nullfs(5), mount(8)

UCLA Technical Report CSD-910056, Stackable Layers: an Architecture for File System Development.

HISTORY
The mount_null utility first appeared in 4.4BSD. It was renamed to mount_nullfs in FreeBSD 5.0.

MOUNT_NULLFS(8) FreeBSD System Manager’s Manual MOUNT_NULLFS(8)

FreeBSD 14.0-RELEASE-p11 June 11, 2023 FreeBSD 14.0-RELEASE-p11


