
NAME
addch, waddch, mvaddch, mvwaddch, echochar, wechochar - add a character (with attributes) to a

curses window, then advance the cursor

SYNOPSIS
#include <curses.h>

int addch(const chtype ch);
int waddch(WINDOW *win, const chtype ch);
int mvaddch(int y, int x, const chtype ch);
int mvwaddch(WINDOW *win, int y, int x, const chtype ch);

int echochar(const chtype ch);
int wechochar(WINDOW *win, const chtype ch);

DESCRIPTION
Adding characters

The addch, waddch, mvaddch and mvwaddch routines put the character ch into the given window at its

current window position, which is then advanced. They are analogous to putchar(3) in stdio(3). If the

advance is at the right margin:

+o The cursor automatically wraps to the beginning of the next line.

+o At the bottom of the current scrolling region, and if scrollok is enabled, the scrolling region is

scrolled up one line.

+o If scrollok is not enabled, writing a character at the lower right margin succeeds. However, an

error is returned because it is not possible to wrap to a new line

If ch is a tab, newline, carriage return or backspace, the cursor is moved appropriately within the

window:

+o Backspace moves the cursor one character left; at the left edge of a window it does nothing.

+o Carriage return moves the cursor to the window left margin on the current line.

+o Newline does a clrtoeol, then moves the cursor to the window left margin on the next line,

scrolling the window if on the last line.

+o Tabs are considered to be at every eighth column. The tab interval may be altered by setting the

curs_addch(3X) curs_addch(3X)

curs_addch(3X)



TABSIZE variable.

If ch is any other nonprintable character, it is drawn in printable form, i.e., the ^X notation used by

unctrl(3X). Calling winch after adding a nonprintable character does not return the character itself, but

instead returns the printable representation of the character.

Video attributes can be combined with a character argument passed to addch or related functions by

logical-ORing them into the character. (Thus, text, including attributes, can be copied from one place

to another using inch(3X) and addch.) See the curs_attr(3X) page for values of predefined video

attribute constants that can be usefully OR’ed into characters.

Echoing characters
The echochar and wechochar routines are equivalent to a call to addch followed by a call to

refresh(3X), or a call to waddch followed by a call to wrefresh. The knowledge that only a single

character is being output is used and, for non-control characters, a considerable performance gain may

be seen by using these routines instead of their equivalents.

Line Graphics
The following variables may be used to add line drawing characters to the screen with routines of the

addch family. The default character listed below is used if the acsc capability does not define a

terminal-specific replacement for it, or if the terminal and locale configuration requires Unicode but the

library is unable to use Unicode.

The names are taken from VT100 nomenclature.

ACS ACS acscGlyph
Name DefaultcharName
---------------------------------------------------------------------------

ACS_BLOCK # 0 solid square

block

ACS_BOARD # h board of

squares

ACS_BTEE + v bottom

tee

ACS_BULLET o ~ bullet

ACS_CKBOARD : a checker board

(stipple)

ACS_DARROW v . arrow pointing

down

ACS_DEGREE ’ f degree

curs_addch(3X) curs_addch(3X)

curs_addch(3X)



symbol

ACS_DIAMOND + ‘ diamond

ACS_GEQUAL > > greater-than-or-equal-to

ACS_HLINE - q horizontal

line

ACS_LANTERN # i lantern

symbol

ACS_LARROW < , arrow pointing

left

ACS_LEQUAL < y less-than-or-equal-to

ACS_LLCORNER + m lower left-hand

corner

ACS_LRCORNER+ j lower right-hand

corner

ACS_LTEE + t left

tee

ACS_NEQUAL ! | not-equal

ACS_PI * { greek

pi

ACS_PLMINUS # g plus/minus

ACS_PLUS + n plus

ACS_RARROW > + arrow pointing

right

ACS_RTEE + u right

tee

ACS_S1 - o scan line

1

ACS_S3 - p scan line

3

ACS_S7 - r scan line

7

ACS_S9 _ s scan line

9

ACS_STERLING f } pound-sterling

symbol

ACS_TTEE + w top

tee

ACS_UARROW ^ - arrow pointing

up

ACS_ULCORNER+ l upper left-hand

curs_addch(3X) curs_addch(3X)

curs_addch(3X)



corner

ACS_URCORNER+ k upper right-hand

corner

ACS_VLINE | x vertical

line

RETURN VALUE
All routines return the integer ERR upon failure and OK on success (the SVr4 manuals specify only

"an integer value other than ERR") upon successful completion, unless otherwise noted in the

preceding routine descriptions.

Functions with a "mv" prefix first perform a cursor movement using wmove, and return an error if the

position is outside the window, or if the window pointer is null.

If it is not possible to add a complete character, an error is returned:

+o If scrollok is not enabled, writing a character at the lower right margin succeeds. However, an

error is returned because it is not possible to wrap to a new line

+o If an error is detected when converting a multibyte character to a sequence of bytes, or if it is not

possible to add all of the resulting bytes in the window, an error is returned.

NOTES
Note that addch, mvaddch, mvwaddch, and echochar may be macros.

PORTABILITY
All these functions are described in the XSI Curses standard, Issue 4. The defaults specified for forms-

drawing characters apply in the POSIX locale.

ACS Symbols
X/Open Curses states that the ACS_ definitions are char constants. For the wide-character

implementation (see curs_add_wch), there are analogous WACS_ definitions which are cchar_t
constants. Some implementations are problematic:

+o Some implementations define the ACS symbols to a constant (such as Solaris), while others define

those to entries in an array.

This implementation uses an array acs_map, as done in SVr4 curses. NetBSD also uses an array,

actually named _acs_char, with a #define for compatibility.

curs_addch(3X) curs_addch(3X)

curs_addch(3X)



+o HPUX curses equates some of the ACS_ symbols to the analogous WACS_ symbols as if the

ACS_ symbols were wide characters. The misdefined symbols are the arrows and other symbols

which are not used for line-drawing.

+o X/Open Curses (issues 2 through 7) has a typographical error for the ACS_LANTERN symbol,

equating its "VT100+ Character" to I (capital I), while the header files for SVr4 curses and the

various implementations use i (lowercase).

None of the terminal descriptions on Unix platforms use uppercase-I, except for Solaris (i.e.,

screen’s terminal description, apparently based on the X/Open documentation around 1995). On

the other hand, the terminal description gs6300 (AT&T PC6300 with EMOTS Terminal Emulator)

uses lowercase-i.

Some ACS symbols (ACS_S3, ACS_S7, ACS_LEQUAL, ACS_GEQUAL, ACS_PI, ACS_NEQUAL,

ACS_STERLING) were not documented in any publicly released System V. However, many publicly

available terminfos include acsc strings in which their key characters (pryz{|}) are embedded, and a

second-hand list of their character descriptions has come to light. The ACS-prefixed names for them

were invented for ncurses(3X).

The displayed values for the ACS_ and WACS_ constants depend on

+o the library configuration, i.e., ncurses versus ncursesw, where the latter is capable of displaying

Unicode while the former is not, and

+o whether the locale uses UTF-8 encoding.

In certain cases, the terminal is unable to display line-drawing characters except by using UTF-8 (see

the discussion of NCURSES_NO_UTF8_ACS in ncurses(3X)).

Character Set
X/Open Curses assumes that the parameter passed to waddch contains a single character. As discussed

in curs_attr(3X), that character may have been more than eight bits in an SVr3 or SVr4

implementation, but in the X/Open Curses model, the details are not given. The important distinction

between SVr4 curses and X/Open Curses is that the non-character information (attributes and color)

was separated from the character information which is packed in a chtype to pass to waddch.

In this implementation, chtype holds an eight-bit character. But ncurses allows multibyte characters to

be passed in a succession of calls to waddch. The other implementations do not do this; a call to

waddch passes exactly one character which may be rendered as one or more cells on the screen

depending on whether it is printable.

curs_addch(3X) curs_addch(3X)

curs_addch(3X)



Depending on the locale settings, ncurses will inspect the byte passed in each call to waddch, and check

if the latest call will continue a multibyte sequence. When a character is complete, ncurses displays the

character and moves to the next position in the screen.

If the calling application interrupts the succession of bytes in a multibyte character by moving the

current location (e.g., using wmove), ncurses discards the partially built character, starting over again.

For portability to other implementations, do not rely upon this behavior:

+o check if a character can be represented as a single byte in the current locale before attempting call

waddch, and

+o call wadd_wch for characters which cannot be handled by waddch.

TABSIZE
The TABSIZE variable is implemented in SVr4 and other versions of curses, but is not part of X/Open

curses (see curs_variables(3X) for more details).

If ch is a carriage return, the cursor is moved to the beginning of the current row of the window. This

is true of other implementations, but is not documented.

SEE ALSO
curses(3X), curs_attr(3X), curs_clear(3X), curs_inch(3X), curs_outopts(3X), curs_refresh(3X),

curs_variables(3X), putc(3).

Comparable functions in the wide-character (ncursesw) library are described in curs_add_wch(3X).

curs_addch(3X) curs_addch(3X)

curs_addch(3X)


