
NAME
initscr, newterm, endwin, isendwin, set_term, delscreen - curses screen initialization and manipulation

routines

SYNOPSIS
#include <curses.h>

WINDOW *initscr(void);
int endwin(void);

bool isendwin(void);

SCREEN *newterm(const char *type, FILE *outfd, FILE *infd);
SCREEN *set_term(SCREEN *new);
void delscreen(SCREEN* sp);

DESCRIPTION
initscr

initscr is normally the first curses routine to call when initializing a program. A few special routines

sometimes need to be called before it; these are slk_init(3X), filter, ripoffline, use_env. For multiple-

terminal applications, newterm may be called before initscr.

The initscr code determines the terminal type and initializes all curses data structures. initscr also

causes the first call to refresh(3X) to clear the screen. If errors occur, initscr writes an appropriate error

message to standard error and exits; otherwise, a pointer is returned to stdscr.

newterm
A program that outputs to more than one terminal should use the newterm routine for each terminal

instead of initscr. A program that needs to inspect capabilities, so it can continue to run in a line-

oriented mode if the terminal cannot support a screen-oriented program, would also use newterm. The

routine newterm should be called once for each terminal. It returns a variable of type SCREEN *
which should be saved as a reference to that terminal. newterm’s arguments are

+o the type of the terminal to be used in place of $TERM,

+o a file pointer for output to the terminal, and

+o another file pointer for input from the terminal

If the type parameter is NULL, $TERM will be used.

curs_initscr(3X) curs_initscr(3X)

curs_initscr(3X)

endwin
The program must also call endwin for each terminal being used before exiting from curses. If

newterm is called more than once for the same terminal, the first terminal referred to must be the last

one for which endwin is called.

A program should always call endwin before exiting or escaping from curses mode temporarily. This

routine

+o resets colors to correspond with the default color pair 0,

+o moves the cursor to the lower left-hand corner of the screen,

+o clears the remainder of the line so that it uses the default colors,

+o sets the cursor to normal visibility (see curs_set(3X)),

+o stops cursor-addressing mode using the exit_ca_mode terminal capability,

+o restores tty modes (see reset_shell_mode(3X)).

Calling refresh(3X) or doupdate(3X) after a temporary escape causes the program to resume visual

mode.

isendwin
The isendwin routine returns TRUE if endwin has been called without any subsequent calls to

wrefresh, and FALSE otherwise.

set_term
The set_term routine is used to switch between different terminals. The screen reference new becomes

the new current terminal. The previous terminal is returned by the routine. This is the only routine

which manipulates SCREEN pointers; all other routines affect only the current terminal.

delscreen
The delscreen routine frees storage associated with the SCREEN data structure. The endwin routine

does not do this, so delscreen should be called after endwin if a particular SCREEN is no longer

needed.

RETURN VALUE
endwin returns the integer ERR upon failure and OK upon successful completion.

curs_initscr(3X) curs_initscr(3X)

curs_initscr(3X)

Routines that return pointers always return NULL on error.

X/Open defines no error conditions. In this implementation

+o endwin returns an error if the terminal was not initialized.

+o newterm returns an error if it cannot allocate the data structures for the screen, or for the top-level

windows within the screen, i.e., curscr, newscr, or stdscr.

+o set_term returns no error.

PORTABILITY
These functions were described in the XSI Curses standard, Issue 4. As of 2015, the current document

is X/Open Curses, Issue 7.

Differences
X/Open specifies that portable applications must not call initscr more than once:

+o The portable way to use initscr is once only, using refresh (see curs_refresh(3X)) to restore the

screen after endwin.

+o This implementation allows using initscr after endwin.

Old versions of curses, e.g., BSD 4.4, may have returned a null pointer from initscr when an error is

detected, rather than exiting. It is safe but redundant to check the return value of initscr in XSI Curses.

Unset TERM Variable
If the TERM variable is missing or empty, initscr uses the value "unknown", which normally

corresponds to a terminal entry with the generic (gn) capability. Generic entries are detected by

setupterm (see curs_terminfo(3X)) and cannot be used for full-screen operation. Other

implementations may handle a missing/empty TERM variable differently.

Signal Handlers
Quoting from X/Open Curses, section 3.1.1:

Curses implementations may provide for special handling of the SIGINT, SIGQUIT and

SIGTSTP signals if their disposition is SIG_DFL at the time initscr is called ...

Any special handling for these signals may remain in effect for the life of the process or until the

process changes the disposition of the signal.

curs_initscr(3X) curs_initscr(3X)

curs_initscr(3X)

None of the Curses functions are required to be safe with respect to signals ...

This implementation establishes signal handlers during initialization, e.g., initscr or newterm.

Applications which must handle these signals should set up the corresponding handlers after initializing

the library:

SIGINT
The handler attempts to cleanup the screen on exit. Although it usually works as expected, there

are limitations:

+o Walking the SCREEN list is unsafe, since all list management is done without any signal

blocking.

+o On systems which have REENTRANT turned on, set_term uses functions which could

deadlock or misbehave in other ways.

+o endwin calls other functions, many of which use stdio or other library functions which are

clearly unsafe.

SIGTERM
This uses the same handler as SIGINT, with the same limitations. It is not mentioned in X/Open

Curses, but is more suitable for this purpose than SIGQUIT (which is used in debugging).

SIGTSTP
This handles the stop signal, used in job control. When resuming the process, this

implementation discards pending input with flushinput (see curs_util(3X)), and repaints the

screen assuming that it has been completely altered. It also updates the saved terminal modes

with def_shell_mode (see curs_kernel(3X)).

SIGWINCH
This handles the window-size changes which were ignored in the standardization efforts. The

handler sets a (signal-safe) variable which is later tested in wgetch (see curs_getch(3X)). If

keypad has been enabled for the corresponding window, wgetch returns the key symbol

KEY_RESIZE. At the same time, wgetch calls resizeterm to adjust the standard screen stdscr,

and update other data such as LINES and COLS.

SEE ALSO
curses(3X), curs_kernel(3X), curs_refresh(3X), curs_slk(3X), curs_terminfo(3X), curs_util(3X),

curs_variables(3X).

curs_initscr(3X) curs_initscr(3X)

curs_initscr(3X)

