
NAME
pass - CAM application passthrough driver

SYNOPSIS
device pass

DESCRIPTION
The pass driver provides a way for userland applications to issue CAM CCBs to the kernel.

Since the pass driver allows direct access to the CAM subsystem, system administrators should exercise

caution when granting access to this driver. If used improperly, this driver can allow userland

applications to crash a machine or cause data loss.

The pass driver attaches to every SCSI and ATA device found in the system. Since it attaches to every

device, it provides a generic means of accessing SCSI and ATA devices, and allows the user to access

devices which have no "standard" peripheral driver associated with them.

KERNEL CONFIGURATION
It is only necessary to configure one pass device in the kernel; pass devices are automatically allocated

as SCSI and ATA devices are found.

IOCTLS
CAMIOCOMMAND union ccb *

This ioctl takes most kinds of CAM CCBs and passes them through to the CAM transport layer

for action. Note that some CCB types are not allowed through the passthrough device, and must

be sent through the xpt(4) device instead. Some examples of xpt-only CCBs are

XPT_SCAN_BUS, XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN,

XPT_ENG_INQ, and XPT_ENG_EXEC. These CCB types have various attributes that make it

illogical or impossible to service them through the passthrough interface.

If the user would like the kernel to do error recovery, the CAM_PASS_ERR_RECOVER flag

must be set on the CCB, and the retry_count field set to the number of retries.

CAMGETPASSTHRU union ccb *

This ioctl takes an XPT_GDEVLIST CCB, and returns the passthrough device corresponding to

the device in question. Although this ioctl is available through the pass driver, it is of limited

use, since the caller must already know that the device in question is a passthrough device if they

are issuing this ioctl. It is probably more useful to issue this ioctl through the xpt(4) device.

CAMIOQUEUE union ccb *

PASS(4) FreeBSD Kernel Interfaces Manual PASS(4)

FreeBSD 14.0-RELEASE-p11 May 3, 2017 FreeBSD 14.0-RELEASE-p11



Queue a CCB to the pass driver to be executed asynchronously. The caller may use select(2),

poll(2) or kevent(2) to receive notification when the CCB has completed.

This ioctl takes most CAM CCBs, but some CCB types are not allowed through the pass device,

and must be sent through the xpt(4) device instead. Some examples of xpt-only CCBs are

XPT_SCAN_BUS, XPT_DEV_MATCH, XPT_RESET_BUS, XPT_SCAN_LUN,

XPT_ENG_INQ, and XPT_ENG_EXEC. These CCB types have various attributes that make it

illogical or impossible to service them through the passthrough interface.

Although the CAMIOQUEUE ioctl is not defined to take an argument, it does require a pointer

to a union ccb. It is not defined to take an argument to avoid an extra malloc and copy inside the

generic ioctl(2) handler.

The completed CCB will be returned via the CAMIOGET ioctl. An error will only be returned

from the CAMIOQUEUE ioctl if there is an error allocating memory for the request or copying

memory from userland. All other errors will be reported as standard CAM CCB status errors.

Since the CCB is not copied back to the user process from the pass driver in the CAMIOQUEUE

ioctl, the user’s passed-in CCB will not be modified. This is the case even with immediate

CCBs. Instead, the completed CCB must be retrieved via the CAMIOGET ioctl and the status

examined.

Multiple CCBs may be queued via the CAMIOQUEUE ioctl at any given time, and they may

complete in a different order than the order that they were submitted. The caller must take steps

to identify CCBs that are queued and completed. The periph_priv structure inside struct ccb_hdr

is available for userland use with the CAMIOQUEUE and CAMIOGET ioctls, and will be

preserved across calls. Also, the periph_links linked list pointers inside struct ccb_hdr are

available for userland use with the CAMIOQUEUE and CAMIOGET ioctls and will be

preserved across calls.

If the user would like the kernel to do error recovery, the CAM_PASS_ERR_RECOVER flag

must be set on the CCB, and the retry_count field set to the number of retries.

CAMIOGET union ccb *

Retrieve completed CAM CCBs queued via the CAMIOQUEUE ioctl. An error will only be

returned from the CAMIOGET ioctl if the pass driver fails to copy data to the user process or if

there are no completed CCBs available to retrieve. If no CCBs are available to retrieve, errno

will be set to ENOENT.

All other errors will be reported as standard CAM CCB status errors.

PASS(4) FreeBSD Kernel Interfaces Manual PASS(4)

FreeBSD 14.0-RELEASE-p11 May 3, 2017 FreeBSD 14.0-RELEASE-p11



Although the CAMIOGET ioctl is not defined to take an argument, it does require a pointer to a

union ccb. It is not defined to take an argument to avoid an extra malloc and copy inside the

generic ioctl(2) handler.

The pass driver will report via select(2), poll(2) or kevent(2) when a CCB has completed. One

CCB may be retrieved per CAMIOGET call. CCBs may be returned in an order different than

the order they were submitted. So the caller should use the periph_priv area inside the CCB

header to store pointers to identifying information.

FILES
/dev/passn Character device nodes for the pass driver. There should be one of these for each device

accessed through the CAM subsystem.

DIAGNOSTICS
None.

SEE ALSO
kqueue(2), poll(2), select(2), cam(3), cam_cdbparse(3), cam(4), cd(4), ctl(4), da(4), sa(4), xpt(4),

camcontrol(8), camdd(8)

HISTORY
The CAM passthrough driver first appeared in FreeBSD 3.0.

AUTHORS
Kenneth Merry <ken@FreeBSD.org>

PASS(4) FreeBSD Kernel Interfaces Manual PASS(4)

FreeBSD 14.0-RELEASE-p11 May 3, 2017 FreeBSD 14.0-RELEASE-p11


