
NAME
pcap_get_required_select_timeout - get a timeout to be used when doing select() for a live capture

SYNOPSIS
#include <pcap/pcap.h>

const struct timeval *pcap_get_required_select_timeout(pcap_t *p);

DESCRIPTION
pcap_get_required_select_timeout() returns, on UNIX, a pointer to a struct timeval containing a value

that must be used as the minimum timeout in select(2), poll(2), epoll_wait(2), and kevent(2) calls, or

NULL if there is no such timeout. If a non-NULL value is returned, it must be used regardless of

whether pcap_get_selectable_fd(3) returns -1 for any descriptor on which those calls are being done.

pcap_get_required_select_timeout() should be called for all pcap_ts before a call to select(), poll(),
epoll_wait(), or kevent(), and any timeouts used for those calls should be updated as appropriate given

the new value of the timeout.

For kevent(), one EVFILT_TIMER filter per selectable descriptor can be used, rather than using the

timeout argument to kevent(); if the EVFILT_TIMER event for a particular selectable descriptor

signals an event, pcap_dispatch(3) should be called for the corresponding pcap_t.

On Linux systems with timerfd_create(2), one timer object created by timerfd_create() per selectable

descriptor can be used, rather than using the timeout argument to epoll_wait(); if the timer object for a

particular selectable descriptor signals an event, pcap_dispatch(3) should be called for the

corresponding pcap_t.

Otherwise, a timeout value no larger than the smallest of all timeouts returned by

pcap_get_required_select_timeout() for devices from which packets will be captured and any other

timeouts to be used in the call should be used as the timeout for the call, and, when the call returns,

pcap_dispatch(3) should be called for all pcap_ts for which a non-NULL timeout was returned,

regardless of whether it’s indicated as having anything to read from it or not.

All devices with a non-NULL timeout must be put in non-blocking mode with pcap_setnonblock(3).

Note that a device on which a read can be done without blocking may, on some platforms, not have any

packets to read if the packet buffer timeout has expired. A call to pcap_dispatch() or pcap_next_ex(3)

will return 0 in this case, but will not block.

pcap_get_required_select_timeout() is not available on Windows.

PCAP_GET_REQUIRED_SELECT_TIMEOUT(3) FreeBSD Library Functions Manual

29 January 2020 PCAP_GET_REQUIRED_SELECT_TIMEOUT(3)



RETURN VALUE
A pointer to a struct timeval is returned if the timeout is required; otherwise NULL is returned.

BACKWARD COMPATIBILITY
This function became available in libpcap release 1.9.0. In previous releases, select(), poll(),
epoll_wait(), and kevent() could not be used for devices that don’t provide a selectable file descriptor

(in other words, on any capture source for that pcap_get_selectable_fd() returns -1).

In libpcap release 1.10.0 and later, the timeout value can change from call to call, so

pcap_get_required_select_timeout() must be called before each call to select(), poll(), epoll_wait(), or

kevent(), and the new value must be used to calculate timeouts for the call. Code that does that will

also work with libpcap 1.9.x releases, so code using pcap_get_required_select_timeout() should be

changed to call it for each call to select(), poll(), epoll_wait(), or kevent() even if the code must also

work with libpcap 1.9.x.

SEE ALSO
pcap(3), pcap_get_selectable_fd(3), select(2), poll(2), epoll_wait(2), kqueue(2)

PCAP_GET_REQUIRED_SELECT_TIMEOUT(3) FreeBSD Library Functions Manual

29 January 2020 PCAP_GET_REQUIRED_SELECT_TIMEOUT(3)


