#include <pcap/pcap.h>

NAME

pcap_next_ex, pcap_next - read the next packet from a pcap_t

SYNOPSIS

```
int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header,
const u_char **pkt_data);
const u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h);
```

DESCRIPTION

pcap_next_ex() reads the next packet and returns a success/failure indication. If the packet was read without problems, the pointer pointed to by the *pkt_header* argument is set to point to the *pcap_pkthdr* struct for the packet, and the pointer pointed to by the *pkt_data* argument is set to point to the data in the packet. The *struct pcap_pkthdr* and the packet data are not to be freed by the caller, and are not guaranteed to be valid after the next call to **pcap_next_ex**(), **pcap_next(**), **pcap_loop**(3), or **pcap_dispatch**(3); if the code needs them to remain valid, it must make a copy of them.

pcap_next() reads the next packet (by calling **pcap_dispatch**() with a *cnt* of 1) and returns a *u_char* pointer to the data in that packet. The packet data is not to be freed by the caller, and is not guaranteed to be valid after the next call to **pcap_next_ex**(), **pcap_next**(), **pcap_loop**(), or **pcap_dispatch**(); if the code needs it to remain valid, it must make a copy of it. The *pcap_pkthdr* structure pointed to by *h* is filled in with the appropriate values for the packet.

The bytes of data from the packet begin with a link-layer header. The format of the link-layer header is indicated by the return value of the **pcap_datalink**(3) routine when handed the **pcap_t** value also passed to **pcap_loop**() or **pcap_dispatch**(). https://www.tcpdump.org/linktypes.html lists the values **pcap_datalink**() can return and describes the packet formats that correspond to those values. The value it returns will be valid for all packets received unless and until **pcap_set_datalink**(3) is called; after a successful call to **pcap_set_datalink**(), all subsequent packets will have a link-layer header of the type specified by the link-layer header type value passed to **pcap_set_datalink**().

Do **NOT** assume that the packets for a given capture or "savefile" will have any given link-layer header type, such as **DLT_EN10MB** for Ethernet. For example, the "any" device on Linux will have a link-layer header type of **DLT_LINUX_SLL** or **DLT_LINUX_SLL2** even if all devices on the system at the time the "any" device is opened have some other data link type, such as **DLT_EN10MB** for Ethernet.

RETURN VALUE

pcap next ex() returns 1 if the packet was read without problems, 0 if packets are being read from a

live capture and the packet buffer timeout expired, **PCAP_ERROR_BREAK** if packets are being read from a "savefile" and there are no more packets to read from the savefile,

PCAP_ERROR_NOT_ACTIVATED if called on a capture handle that has been created but not activated, or **PCAP_ERROR** if an error occurred while reading the packet. If **PCAP_ERROR** is returned, **pcap_geterr**(3) or **pcap_perror**(3) may be called with *p* as an argument to fetch or display the error text.

pcap_next() returns a pointer to the packet data on success, and returns NULL if an error occurred, or if no packets were read from a live capture (if, for example, they were discarded because they didn't pass the packet filter, or if, on platforms that support a packet buffer timeout that starts before any packets arrive, the timeout expires before any packets arrive, or if the file descriptor for the capture device is in non-blocking mode and no packets were available to be read), or if no more packets are available in a "savefile." Unfortunately, there is no way to determine whether an error occurred or not.

SEE ALSO

pcap(3)