
NAME
pcre2test - a program for testing Perl-compatible regular expressions.

SYNOPSIS
pcre2test [options] [input file [output file]]

pcre2test is a test program for the PCRE2 regular expression libraries, but it can also be used for

experimenting with regular expressions. This document describes the features of the test program; for

details of the regular expressions themselves, see the pcre2pattern documentation. For details of the

PCRE2 library function calls and their options, see the pcre2api documentation.

The input for pcre2test is a sequence of regular expression patterns and subject strings to be matched.

There are also command lines for setting defaults and controlling some special actions. The output

shows the result of each match attempt. Modifiers on external or internal command lines, the patterns,

and the subject lines specify PCRE2 function options, control how the subject is processed, and what

output is produced.

There are many obscure modifiers, some of which are specifically designed for use in conjunction with

the test script and data files that are distributed as part of PCRE2. All the modifiers are documented

here, some without much justification, but many of them are unlikely to be of use except when testing

the libraries.

PCRE2’s 8-BIT, 16-BIT AND 32-BIT LIBRARIES
Different versions of the PCRE2 library can be built to support character strings that are encoded in

8-bit, 16-bit, or 32-bit code units. One, two, or all three of these libraries may be simultaneously

installed. The pcre2test program can be used to test all the libraries. However, its own input and output

are always in 8-bit format. When testing the 16-bit or 32-bit libraries, patterns and subject strings are

converted to 16-bit or 32-bit format before being passed to the library functions. Results are converted

back to 8-bit code units for output.

In the rest of this document, the names of library functions and structures are given in generic form, for

example, pcre2_compile(). The actual names used in the libraries have a suffix _8, _16, or _32, as

appropriate.

INPUT ENCODING
Input to pcre2test is processed line by line, either by calling the C library’s fgets() function, or via the

libreadline or libedit library. In some Windows environments character 26 (hex 1A) causes an

immediate end of file, and no further data is read, so this character should be avoided unless you really

want that action.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

The input is processed using using C’s string functions, so must not contain binary zeros, even though

in Unix-like environments, fgets() treats any bytes other than newline as data characters. An error is

generated if a binary zero is encountered. By default subject lines are processed for backslash escapes,

which makes it possible to include any data value in strings that are passed to the library for matching.

For patterns, there is a facility for specifying some or all of the 8-bit input characters as hexadecimal

pairs, which makes it possible to include binary zeros.

Input for the 16-bit and 32-bit libraries
When testing the 16-bit or 32-bit libraries, there is a need to be able to generate character code points

greater than 255 in the strings that are passed to the library. For subject lines, backslash escapes can be

used. In addition, when the utf modifier (see "Setting compilation options" below) is set, the pattern

and any following subject lines are interpreted as UTF-8 strings and translated to UTF-16 or UTF-32 as

appropriate.

For non-UTF testing of wide characters, the utf8_input modifier can be used. This is mutually

exclusive with utf, and is allowed only in 16-bit or 32-bit mode. It causes the pattern and following

subject lines to be treated as UTF-8 according to the original definition (RFC 2279), which allows for

character values up to 0x7fffffff. Each character is placed in one 16-bit or 32-bit code unit (in the 16-bit

case, values greater than 0xffff cause an error to occur).

UTF-8 (in its original definition) is not capable of encoding values greater than 0x7fffffff, but such

values can be handled by the 32-bit library. When testing this library in non-UTF mode with utf8_input
set, if any character is preceded by the byte 0xff (which is an invalid byte in UTF-8) 0x80000000 is

added to the character’s value. This is the only way of passing such code points in a pattern string. For

subject strings, using an escape sequence is preferable.

COMMAND LINE OPTIONS
-8 If the 8-bit library has been built, this option causes it to be used (this is the default). If the

8-bit library has not been built, this option causes an error.

-16 If the 16-bit library has been built, this option causes it to be used. If only the 16-bit library

has been built, this is the default. If the 16-bit library has not been built, this option causes

an error.

-32 If the 32-bit library has been built, this option causes it to be used. If only the 32-bit library

has been built, this is the default. If the 32-bit library has not been built, this option causes

an error.

-ac Behave as if each pattern has the auto_callout modifier, that is, insert automatic callouts

into every pattern that is compiled.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

-AC As for -ac, but in addition behave as if each subject line has the callout_extra modifier, that

is, show additional information from callouts.

-b Behave as if each pattern has the fullbincode modifier; the full internal binary form of the

pattern is output after compilation.

-C Output the version number of the PCRE2 library, and all available information about the

optional features that are included, and then exit with zero exit code. All other options are

ignored. If both -C and -LM are present, whichever is first is recognized.

-C option Output information about a specific build-time option, then exit. This functionality is

intended for use in scripts such as RunTest. The following options output the value and set

the exit code as indicated:

ebcdic-nl the code for LF (= NL) in an EBCDIC environment:

0x15 or 0x25

0 if used in an ASCII environment

exit code is always 0

linksize the configured internal link size (2, 3, or 4)

exit code is set to the link size

newline the default newline setting:

CR, LF, CRLF, ANYCRLF, ANY, or NUL

exit code is always 0

bsr the default setting for what \R matches:

ANYCRLF or ANY

exit code is always 0

The following options output 1 for true or 0 for false, and set the exit code to the same

value:

backslash-C \C is supported (not locked out)

ebcdic compiled for an EBCDIC environment

jit just-in-time support is available

pcre2-16 the 16-bit library was built

pcre2-32 the 32-bit library was built

pcre2-8 the 8-bit library was built

unicode Unicode support is available

If an unknown option is given, an error message is output; the exit code is 0.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

-d Behave as if each pattern has the debug modifier; the internal form and information about

the compiled pattern is output after compilation; -d is equivalent to -b -i.

-dfa Behave as if each subject line has the dfa modifier; matching is done using the

pcre2_dfa_match() function instead of the default pcre2_match().

-error number[,number,...]

Call pcre2_get_error_message() for each of the error numbers in the comma-separated list,

display the resulting messages on the standard output, then exit with zero exit code. The

numbers may be positive or negative. This is a convenience facility for PCRE2

maintainers.

-help Output a brief summary these options and then exit.

-i Behave as if each pattern has the info modifier; information about the compiled pattern is

given after compilation.

-jit Behave as if each pattern line has the jit modifier; after successful compilation, each

pattern is passed to the just-in-time compiler, if available.

-jitfast Behave as if each pattern line has the jitfast modifier; after successful compilation, each

pattern is passed to the just-in-time compiler, if available, and each subject line is passed

directly to the JIT matcher via its "fast path".

-jitverify Behave as if each pattern line has the jitverify modifier; after successful compilation, each

pattern is passed to the just-in-time compiler, if available, and the use of JIT for matching

is verified.

-LM List modifiers: write a list of available pattern and subject modifiers to the standard output,

then exit with zero exit code. All other options are ignored. If both -C and any -Lx options

are present, whichever is first is recognized.

-LP List properties: write a list of recognized Unicode properties to the standard output, then

exit with zero exit code. All other options are ignored. If both -C and any -Lx options are

present, whichever is first is recognized.

-LS List scripts: write a list of recognized Unicode script names to the standard output, then

exit with zero exit code. All other options are ignored. If both -C and any -Lx options are

present, whichever is first is recognized.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

-pattern modifier-list

Behave as if each pattern line contains the given modifiers.

-q Do not output the version number of pcre2test at the start of execution.

-S size On Unix-like systems, set the size of the run-time stack to size mebibytes (units of

1024*1024 bytes).

-subject modifier-list

Behave as if each subject line contains the given modifiers.

-t Run each compile and match many times with a timer, and output the resulting times per

compile or match. When JIT is used, separate times are given for the initial compile and

the JIT compile. You can control the number of iterations that are used for timing by

following -t with a number (as a separate item on the command line). For example, "-t

1000" iterates 1000 times. The default is to iterate 500,000 times.

-tm This is like -t except that it times only the matching phase, not the compile phase.

-T -TM These behave like -t and -tm, but in addition, at the end of a run, the total times for all

compiles and matches are output.

-version Output the PCRE2 version number and then exit.

DESCRIPTION
If pcre2test is given two filename arguments, it reads from the first and writes to the second. If the first

name is "-", input is taken from the standard input. If pcre2test is given only one argument, it reads

from that file and writes to stdout. Otherwise, it reads from stdin and writes to stdout.

When pcre2test is built, a configuration option can specify that it should be linked with the libreadline
or libedit library. When this is done, if the input is from a terminal, it is read using the readline()
function. This provides line-editing and history facilities. The output from the -help option states

whether or not readline() will be used.

The program handles any number of tests, each of which consists of a set of input lines. Each set starts

with a regular expression pattern, followed by any number of subject lines to be matched against that

pattern. In between sets of test data, command lines that begin with # may appear. This file format,

with some restrictions, can also be processed by the perltest.sh script that is distributed with PCRE2 as

a means of checking that the behaviour of PCRE2 and Perl is the same. For a specification of

perltest.sh, see the comments near its beginning. See also the #perltest command below.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

When the input is a terminal, pcre2test prompts for each line of input, using "re>" to prompt for regular

expression patterns, and "data>" to prompt for subject lines. Command lines starting with # can be

entered only in response to the "re>" prompt.

Each subject line is matched separately and independently. If you want to do multi-line matches, you

have to use the \n escape sequence (or \r or \r\n, etc., depending on the newline setting) in a single line

of input to encode the newline sequences. There is no limit on the length of subject lines; the input

buffer is automatically extended if it is too small. There are replication features that makes it possible

to generate long repetitive pattern or subject lines without having to supply them explicitly.

An empty line or the end of the file signals the end of the subject lines for a test, at which point a new

pattern or command line is expected if there is still input to be read.

COMMAND LINES
In between sets of test data, a line that begins with # is interpreted as a command line. If the first

character is followed by white space or an exclamation mark, the line is treated as a comment, and

ignored. Otherwise, the following commands are recognized:

#forbid_utf

Subsequent patterns automatically have the PCRE2_NEVER_UTF and PCRE2_NEVER_UCP options

set, which locks out the use of the PCRE2_UTF and PCRE2_UCP options and the use of (*UTF) and

(*UCP) at the start of patterns. This command also forces an error if a subsequent pattern contains any

occurrences of \P, \p, or \X, which are still supported when PCRE2_UTF is not set, but which require

Unicode property support to be included in the library.

This is a trigger guard that is used in test files to ensure that UTF or Unicode property tests are not

accidentally added to files that are used when Unicode support is not included in the library. Setting

PCRE2_NEVER_UTF and PCRE2_NEVER_UCP as a default can also be obtained by the use of

#pattern; the difference is that #forbid_utf cannot be unset, and the automatic options are not displayed

in pattern information, to avoid cluttering up test output.

#load <filename>

This command is used to load a set of precompiled patterns from a file, as described in the section

entitled "Saving and restoring compiled patterns" below.

#loadtables <filename>

This command is used to load a set of binary character tables that can be accessed by the tables=3

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

qualifier. Such tables can be created by the pcre2_dftables program with the -b option.

#newline_default [<newline-list>]

When PCRE2 is built, a default newline convention can be specified. This determines which characters

and/or character pairs are recognized as indicating a newline in a pattern or subject string. The default

can be overridden when a pattern is compiled. The standard test files contain tests of various newline

conventions, but the majority of the tests expect a single linefeed to be recognized as a newline by

default. Without special action the tests would fail when PCRE2 is compiled with either CR or CRLF

as the default newline.

The #newline_default command specifies a list of newline types that are acceptable as the default. The

types must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in upper or lower case), for example:

#newline_default LF Any anyCRLF

If the default newline is in the list, this command has no effect. Otherwise, except when testing the

POSIX API, a newline modifier that specifies the first newline convention in the list (LF in the above

example) is added to any pattern that does not already have a newline modifier. If the newline list is

empty, the feature is turned off. This command is present in a number of the standard test input files.

When the POSIX API is being tested there is no way to override the default newline convention,

though it is possible to set the newline convention from within the pattern. A warning is given if the

posix or posix_nosub modifier is used when #newline_default would set a default for the non-POSIX

API.

#pattern <modifier-list>

This command sets a default modifier list that applies to all subsequent patterns. Modifiers on a pattern

can change these settings.

#perltest

This line is used in test files that can also be processed by perltest.sh to confirm that Perl gives the

same results as PCRE2. Subsequent tests are checked for the use of pcre2test features that are

incompatible with the perltest.sh script.

Patterns must use ’/’ as their delimiter, and only certain modifiers are supported. Comment lines,

#pattern commands, and #subject commands that set or unset "mark" are recognized and acted on. The

#perltest, #forbid_utf, and #newline_default commands, which are needed in the relevant pcre2test

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

files, are silently ignored. All other command lines are ignored, but give a warning message. The

#perltest command helps detect tests that are accidentally put in the wrong file or use the wrong

delimiter. For more details of the perltest.sh script see the comments it contains.

#pop [<modifiers>]

#popcopy [<modifiers>]

These commands are used to manipulate the stack of compiled patterns, as described in the section

entitled "Saving and restoring compiled patterns" below.

#save <filename>

This command is used to save a set of compiled patterns to a file, as described in the section entitled

"Saving and restoring compiled patterns" below.

#subject <modifier-list>

This command sets a default modifier list that applies to all subsequent subject lines. Modifiers on a

subject line can change these settings.

MODIFIER SYNTAX
Modifier lists are used with both pattern and subject lines. Items in a list are separated by commas

followed by optional white space. Trailing whitespace in a modifier list is ignored. Some modifiers

may be given for both patterns and subject lines, whereas others are valid only for one or the other.

Each modifier has a long name, for example "anchored", and some of them must be followed by an

equals sign and a value, for example, "offset=12". Values cannot contain comma characters, but may

contain spaces. Modifiers that do not take values may be preceded by a minus sign to turn off a

previous setting.

A few of the more common modifiers can also be specified as single letters, for example "i" for

"caseless". In documentation, following the Perl convention, these are written with a slash ("the /i

modifier") for clarity. Abbreviated modifiers must all be concatenated in the first item of a modifier

list. If the first item is not recognized as a long modifier name, it is interpreted as a sequence of these

abbreviations. For example:

/abc/ig,newline=cr,jit=3

This is a pattern line whose modifier list starts with two one-letter modifiers (/i and /g). The lower-case

abbreviated modifiers are the same as used in Perl.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PATTERN SYNTAX
A pattern line must start with one of the following characters (common symbols, excluding pattern

meta-characters):

/ ! " ’ ‘ - = _ : ; , % & @ ~

This is interpreted as the pattern’s delimiter. A regular expression may be continued over several input

lines, in which case the newline characters are included within it. It is possible to include the delimiter

as a literal within the pattern by escaping it with a backslash, for example

/abc\/def/

If you do this, the escape and the delimiter form part of the pattern, but since the delimiters are all non-

alphanumeric, the inclusion of the backslash does not affect the pattern’s interpretation. Note, however,

that this trick does not work within \Q...\E literal bracketing because the backslash will itself be

interpreted as a literal. If the terminating delimiter is immediately followed by a backslash, for

example,

/abc/\

then a backslash is added to the end of the pattern. This is done to provide a way of testing the error

condition that arises if a pattern finishes with a backslash, because

/abc\/

is interpreted as the first line of a pattern that starts with "abc/", causing pcre2test to read the next line

as a continuation of the regular expression.

A pattern can be followed by a modifier list (details below).

SUBJECT LINE SYNTAX
Before each subject line is passed to pcre2_match(), pcre2_dfa_match(), or pcre2_jit_match(), leading

and trailing white space is removed, and the line is scanned for backslash escapes, unless the

subject_literal modifier was set for the pattern. The following provide a means of encoding non-

printing characters in a visible way:

\a alarm (BEL, \x07)

\b backspace (\x08)

\e escape (\x27)

\f form feed (\x0c)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

\n newline (\x0a)

\r carriage return (\x0d)

\t tab (\x09)

\v vertical tab (\x0b)

\nnn octal character (up to 3 octal digits); always

a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode

\o{dd...} octal character (any number of octal digits}

\xhh hexadecimal byte (up to 2 hex digits)

\x{hh...} hexadecimal character (any number of hex digits)

The use of \x{hh...} is not dependent on the use of the utf modifier on the pattern. It is recognized

always. There may be any number of hexadecimal digits inside the braces; invalid values provoke error

messages.

Note that \xhh specifies one byte rather than one character in UTF-8 mode; this makes it possible to

construct invalid UTF-8 sequences for testing purposes. On the other hand, \x{hh} is interpreted as a

UTF-8 character in UTF-8 mode, generating more than one byte if the value is greater than 127. When

testing the 8-bit library not in UTF-8 mode, \x{hh} generates one byte for values less than 256, and

causes an error for greater values.

In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it possible to construct invalid

UTF-16 sequences for testing purposes.

In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makes it possible to construct invalid

UTF-32 sequences for testing purposes.

There is a special backslash sequence that specifies replication of one or more characters:

\[<characters>]{<count>}

This makes it possible to test long strings without having to provide them as part of the file. For

example:

\[abc]{4}

is converted to "abcabcabcabc". This feature does not support nesting. To include a closing square

bracket in the characters, code it as \x5D.

A backslash followed by an equals sign marks the end of the subject string and the start of a modifier

list. For example:

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

abc\=notbol,notempty

If the subject string is empty and \= is followed by whitespace, the line is treated as a comment line,

and is not used for matching. For example:

\= This is a comment.

abc\= This is an invalid modifier list.

A backslash followed by any other non-alphanumeric character just escapes that character. A backslash

followed by anything else causes an error. However, if the very last character in the line is a backslash

(and there is no modifier list), it is ignored. This gives a way of passing an empty line as data, since a

real empty line terminates the data input.

If the subject_literal modifier is set for a pattern, all subject lines that follow are treated as literals, with

no special treatment of backslashes. No replication is possible, and any subject modifiers must be set

as defaults by a #subject command.

PATTERN MODIFIERS
There are several types of modifier that can appear in pattern lines. Except where noted below, they

may also be used in #pattern commands. A pattern’s modifier list can add to or override default

modifiers that were set by a previous #pattern command.

Setting compilation options
The following modifiers set options for pcre2_compile(). Most of them set bits in the options argument

of that function, but those whose names start with PCRE2_EXTRA are additional options that are set in

the compile context. For the main options, there are some single-letter abbreviations that are the same

as Perl options. There is special handling for /x: if a second x is present, PCRE2_EXTENDED is

converted into PCRE2_EXTENDED_MORE as in Perl. A third appearance adds PCRE2_EXTENDED

as well, though this makes no difference to the way pcre2_compile() behaves. See pcre2api for a

description of the effects of these options.

allow_empty_class set PCRE2_ALLOW_EMPTY_CLASS

allow_lookaround_bsk set PCRE2_EXTRA_ALLOW_LOOKAROUND_BSK

allow_surrogate_escapes set PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES

alt_bsux set PCRE2_ALT_BSUX

alt_circumflex set PCRE2_ALT_CIRCUMFLEX

alt_verbnames set PCRE2_ALT_VERBNAMES

anchored set PCRE2_ANCHORED

auto_callout set PCRE2_AUTO_CALLOUT

bad_escape_is_literal set PCRE2_EXTRA_BAD_ESCAPE_IS_LITERAL

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

/i caseless set PCRE2_CASELESS

dollar_endonly set PCRE2_DOLLAR_ENDONLY

/s dotall set PCRE2_DOTALL

dupnames set PCRE2_DUPNAMES

endanchored set PCRE2_ENDANCHORED

escaped_cr_is_lf set PCRE2_EXTRA_ESCAPED_CR_IS_LF

/x extended set PCRE2_EXTENDED

/xx extended_more set PCRE2_EXTENDED_MORE

extra_alt_bsux set PCRE2_EXTRA_ALT_BSUX

firstline set PCRE2_FIRSTLINE

literal set PCRE2_LITERAL

match_line set PCRE2_EXTRA_MATCH_LINE

match_invalid_utf set PCRE2_MATCH_INVALID_UTF

match_unset_backref set PCRE2_MATCH_UNSET_BACKREF

match_word set PCRE2_EXTRA_MATCH_WORD

/m multiline set PCRE2_MULTILINE

never_backslash_c set PCRE2_NEVER_BACKSLASH_C

never_ucp set PCRE2_NEVER_UCP

never_utf set PCRE2_NEVER_UTF

/n no_auto_capture set PCRE2_NO_AUTO_CAPTURE

no_auto_possess set PCRE2_NO_AUTO_POSSESS

no_dotstar_anchor set PCRE2_NO_DOTSTAR_ANCHOR

no_start_optimize set PCRE2_NO_START_OPTIMIZE

no_utf_check set PCRE2_NO_UTF_CHECK

ucp set PCRE2_UCP

ungreedy set PCRE2_UNGREEDY

use_offset_limit set PCRE2_USE_OFFSET_LIMIT

utf set PCRE2_UTF

As well as turning on the PCRE2_UTF option, the utf modifier causes all non-printing characters in

output strings to be printed using the \x{hh...} notation. Otherwise, those less than 0x100 are output in

hex without the curly brackets. Setting utf in 16-bit or 32-bit mode also causes pattern and subject

strings to be translated to UTF-16 or UTF-32, respectively, before being passed to library functions.

Setting compilation controls
The following modifiers affect the compilation process or request information about the pattern. There

are single-letter abbreviations for some that are heavily used in the test files.

bsr=[anycrlf|unicode] specify \R handling

/B bincode show binary code without lengths

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

callout_info show callout information

convert=<options> request foreign pattern conversion

convert_glob_escape=c set glob escape character

convert_glob_separator=c set glob separator character

convert_length set convert buffer length

debug same as info,fullbincode

framesize show matching frame size

fullbincode show binary code with lengths

/I info show info about compiled pattern

hex unquoted characters are hexadecimal

jit[=<number>] use JIT

jitfast use JIT fast path

jitverify verify JIT use

locale=<name> use this locale

max_pattern_length=<n> set the maximum pattern length

memory show memory used

newline=<type> set newline type

null_context compile with a NULL context

parens_nest_limit=<n> set maximum parentheses depth

posix use the POSIX API

posix_nosub use the POSIX API with REG_NOSUB

push push compiled pattern onto the stack

pushcopy push a copy onto the stack

stackguard=<number> test the stackguard feature

subject_literal treat all subject lines as literal

tables=[0|1|2|3] select internal tables

use_length do not zero-terminate the pattern

utf8_input treat input as UTF-8

The effects of these modifiers are described in the following sections.

Newline and \R handling
The bsr modifier specifies what \R in a pattern should match. If it is set to "anycrlf", \R matches CR,

LF, or CRLF only. If it is set to "unicode", \R matches any Unicode newline sequence. The default can

be specified when PCRE2 is built; if it is not, the default is set to Unicode.

The newline modifier specifies which characters are to be interpreted as newlines, both in the pattern

and in subject lines. The type must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in upper or

lower case).

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Information about a pattern
The debug modifier is a shorthand for info,fullbincode, requesting all available information.

The bincode modifier causes a representation of the compiled code to be output after compilation. This

information does not contain length and offset values, which ensures that the same output is generated

for different internal link sizes and different code unit widths. By using bincode, the same regression

tests can be used in different environments.

The fullbincode modifier, by contrast, does include length and offset values. This is used in a few

special tests that run only for specific code unit widths and link sizes, and is also useful for one-off

tests.

The info modifier requests information about the compiled pattern (whether it is anchored, has a fixed

first character, and so on). The information is obtained from the pcre2_pattern_info() function. Here are

some typical examples:

re> /(?i)(^a|^b)/m,info

Capture group count = 1

Compile options: multiline

Overall options: caseless multiline

First code unit at start or follows newline

Subject length lower bound = 1

re> /(?i)abc/info

Capture group count = 0

Compile options: <none>

Overall options: caseless

First code unit = ’a’ (caseless)

Last code unit = ’c’ (caseless)

Subject length lower bound = 3

"Compile options" are those specified by modifiers; "overall options" have added options that are taken

or deduced from the pattern. If both sets of options are the same, just a single "options" line is output; if

there are no options, the line is omitted. "First code unit" is where any match must start; if there is more

than one they are listed as "starting code units". "Last code unit" is the last literal code unit that must be

present in any match. This is not necessarily the last character. These lines are omitted if no starting or

ending code units are recorded. The subject length line is omitted when no_start_optimize is set

because the minimum length is not calculated when it can never be used.

The framesize modifier shows the size, in bytes, of the storage frames used by pcre2_match() for

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

handling backtracking. The size depends on the number of capturing parentheses in the pattern.

The callout_info modifier requests information about all the callouts in the pattern. A list of them is

output at the end of any other information that is requested. For each callout, either its number or string

is given, followed by the item that follows it in the pattern.

Passing a NULL context
Normally, pcre2test passes a context block to pcre2_compile(). If the null_context modifier is set,

however, NULL is passed. This is for testing that pcre2_compile() behaves correctly in this case (it

uses default values).

Specifying pattern characters in hexadecimal
The hex modifier specifies that the characters of the pattern, except for substrings enclosed in single or

double quotes, are to be interpreted as pairs of hexadecimal digits. This feature is provided as a way of

creating patterns that contain binary zeros and other non-printing characters. White space is permitted

between pairs of digits. For example, this pattern contains three characters:

/ab 32 59/hex

Parts of such a pattern are taken literally if quoted. This pattern contains nine characters, only two of

which are specified in hexadecimal:

/ab "literal" 32/hex

Either single or double quotes may be used. There is no way of including the delimiter within a

substring. The hex and expand modifiers are mutually exclusive.

Specifying the pattern’s length
By default, patterns are passed to the compiling functions as zero-terminated strings but can be passed

by length instead of being zero-terminated. The use_length modifier causes this to happen. Using a

length happens automatically (whether or not use_length is set) when hex is set, because patterns

specified in hexadecimal may contain binary zeros.

If hex or use_length is used with the POSIX wrapper API (see "Using the POSIX wrapper API"

below), the REG_PEND extension is used to pass the pattern’s length.

Specifying wide characters in 16-bit and 32-bit modes
In 16-bit and 32-bit modes, all input is automatically treated as UTF-8 and translated to UTF-16 or

UTF-32 when the utf modifier is set. For testing the 16-bit and 32-bit libraries in non-UTF mode, the

utf8_input modifier can be used. It is mutually exclusive with utf. Input lines are interpreted as UTF-8

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

as a means of specifying wide characters. More details are given in "Input encoding" above.

Generating long repetitive patterns
Some tests use long patterns that are very repetitive. Instead of creating a very long input line for such

a pattern, you can use a special repetition feature, similar to the one described for subject lines above. If

the expand modifier is present on a pattern, parts of the pattern that have the form

\[<characters>]{<count>}

are expanded before the pattern is passed to pcre2_compile(). For example, \[AB]{6000} is expanded

to "ABAB..." 6000 times. This construction cannot be nested. An initial "\[" sequence is recognized

only if "]{" followed by decimal digits and "}" is found later in the pattern. If not, the characters remain

in the pattern unaltered. The expand and hex modifiers are mutually exclusive.

If part of an expanded pattern looks like an expansion, but is really part of the actual pattern, unwanted

expansion can be avoided by giving two values in the quantifier. For example, \[AB]{6000,6000} is

not recognized as an expansion item.

If the info modifier is set on an expanded pattern, the result of the expansion is included in the

information that is output.

JIT compilation
Just-in-time (JIT) compiling is a heavyweight optimization that can greatly speed up pattern matching.

See the pcre2jit documentation for details. JIT compiling happens, optionally, after a pattern has been

successfully compiled into an internal form. The JIT compiler converts this to optimized machine code.

It needs to know whether the match-time options PCRE2_PARTIAL_HARD and

PCRE2_PARTIAL_SOFT are going to be used, because different code is generated for the different

cases. See the partial modifier in "Subject Modifiers" below for details of how these options are

specified for each match attempt.

JIT compilation is requested by the jit pattern modifier, which may optionally be followed by an equals

sign and a number in the range 0 to 7. The three bits that make up the number specify which of the

three JIT operating modes are to be compiled:

1 compile JIT code for non-partial matching

2 compile JIT code for soft partial matching

4 compile JIT code for hard partial matching

The possible values for the jit modifier are therefore:

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

0 disable JIT

1 normal matching only

2 soft partial matching only

3 normal and soft partial matching

4 hard partial matching only

6 soft and hard partial matching only

7 all three modes

If no number is given, 7 is assumed. The phrase "partial matching" means a call to pcre2_match() with

either the PCRE2_PARTIAL_SOFT or the PCRE2_PARTIAL_HARD option set. Note that such a call

may return a complete match; the options enable the possibility of a partial match, but do not require it.

Note also that if you request JIT compilation only for partial matching (for example, jit=2) but do not

set the partial modifier on a subject line, that match will not use JIT code because none was compiled

for non-partial matching.

If JIT compilation is successful, the compiled JIT code will automatically be used when an appropriate

type of match is run, except when incompatible run-time options are specified. For more details, see the

pcre2jit documentation. See also the jitstack modifier below for a way of setting the size of the JIT

stack.

If the jitfast modifier is specified, matching is done using the JIT "fast path" interface,

pcre2_jit_match(), which skips some of the sanity checks that are done by pcre2_match(), and of

course does not work when JIT is not supported. If jitfast is specified without jit, jit=7 is assumed.

If the jitverify modifier is specified, information about the compiled pattern shows whether JIT

compilation was or was not successful. If jitverify is specified without jit, jit=7 is assumed. If JIT

compilation is successful when jitverify is set, the text "(JIT)" is added to the first output line after a

match or non match when JIT-compiled code was actually used in the match.

Setting a locale
The locale modifier must specify the name of a locale, for example:

/pattern/locale=fr_FR

The given locale is set, pcre2_maketables() is called to build a set of character tables for the locale, and

this is then passed to pcre2_compile() when compiling the regular expression. The same tables are used

when matching the following subject lines. The locale modifier applies only to the pattern on which it

appears, but can be given in a #pattern command if a default is needed. Setting a locale and alternate

character tables are mutually exclusive.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Showing pattern memory
The memory modifier causes the size in bytes of the memory used to hold the compiled pattern to be

output. This does not include the size of the pcre2_code block; it is just the actual compiled data. If the

pattern is subsequently passed to the JIT compiler, the size of the JIT compiled code is also output.

Here is an example:

re> /a(b)c/jit,memory

Memory allocation (code space): 21

Memory allocation (JIT code): 1910

Limiting nested parentheses
The parens_nest_limit modifier sets a limit on the depth of nested parentheses in a pattern. Breaching

the limit causes a compilation error. The default for the library is set when PCRE2 is built, but

pcre2test sets its own default of 220, which is required for running the standard test suite.

Limiting the pattern length
The max_pattern_length modifier sets a limit, in code units, to the length of pattern that

pcre2_compile() will accept. Breaching the limit causes a compilation error. The default is the largest

number a PCRE2_SIZE variable can hold (essentially unlimited).

Using the POSIX wrapper API
The posix and posix_nosub modifiers cause pcre2test to call PCRE2 via the POSIX wrapper API rather

than its native API. When posix_nosub is used, the POSIX option REG_NOSUB is passed to

regcomp(). The POSIX wrapper supports only the 8-bit library. Note that it does not imply POSIX

matching semantics; for more detail see the pcre2posix documentation. The following pattern modifiers

set options for the regcomp() function:

caseless REG_ICASE

multiline REG_NEWLINE

dotall REG_DOTALL)

ungreedy REG_UNGREEDY) These options are not part of

ucp REG_UCP) the POSIX standard

utf REG_UTF8)

The regerror_buffsize modifier specifies a size for the error buffer that is passed to regerror() in the

event of a compilation error. For example:

/abc/posix,regerror_buffsize=20

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

This provides a means of testing the behaviour of regerror() when the buffer is too small for the error

message. If this modifier has not been set, a large buffer is used.

The aftertext and allaftertext subject modifiers work as described below. All other modifiers are either

ignored, with a warning message, or cause an error.

The pattern is passed to regcomp() as a zero-terminated string by default, but if the use_length or hex
modifiers are set, the REG_PEND extension is used to pass it by length.

Testing the stack guard feature
The stackguard modifier is used to test the use of pcre2_set_compile_recursion_guard(), a function that

is provided to enable stack availability to be checked during compilation (see the pcre2api
documentation for details). If the number specified by the modifier is greater than zero,

pcre2_set_compile_recursion_guard() is called to set up callback from pcre2_compile() to a local

function. The argument it receives is the current nesting parenthesis depth; if this is greater than the

value given by the modifier, non-zero is returned, causing the compilation to be aborted.

Using alternative character tables
The value specified for the tables modifier must be one of the digits 0, 1, 2, or 3. It causes a specific set

of built-in character tables to be passed to pcre2_compile(). This is used in the PCRE2 tests to check

behaviour with different character tables. The digit specifies the tables as follows:

0 do not pass any special character tables

1 the default ASCII tables, as distributed in

pcre2_chartables.c.dist

2 a set of tables defining ISO 8859 characters

3 a set of tables loaded by the #loadtables command

In tables 2, some characters whose codes are greater than 128 are identified as letters, digits, spaces,

etc. Tables 3 can be used only after a #loadtables command has loaded them from a binary file. Setting

alternate character tables and a locale are mutually exclusive.

Setting certain match controls
The following modifiers are really subject modifiers, and are described under "Subject Modifiers"

below. However, they may be included in a pattern’s modifier list, in which case they are applied to

every subject line that is processed with that pattern. These modifiers do not affect the compilation

process.

aftertext show text after match

allaftertext show text after captures

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

allcaptures show all captures

allvector show the entire ovector

allusedtext show all consulted text

altglobal alternative global matching

/g global global matching

jitstack=<n> set size of JIT stack

mark show mark values

replace=<string> specify a replacement string

startchar show starting character when relevant

substitute_callout use substitution callouts

substitute_extended use PCRE2_SUBSTITUTE_EXTENDED

substitute_literal use PCRE2_SUBSTITUTE_LITERAL

substitute_matched use PCRE2_SUBSTITUTE_MATCHED

substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

substitute_replacement_only use PCRE2_SUBSTITUTE_REPLACEMENT_ONLY

substitute_skip=<n> skip substitution <n>

substitute_stop=<n> skip substitution <n> and following

substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET

substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET_EMPTY

These modifiers may not appear in a #pattern command. If you want them as defaults, set them in a

#subject command.

Specifying literal subject lines
If the subject_literal modifier is present on a pattern, all the subject lines that it matches are taken as

literal strings, with no interpretation of backslashes. It is not possible to set subject modifiers on such

lines, but any that are set as defaults by a #subject command are recognized.

Saving a compiled pattern
When a pattern with the push modifier is successfully compiled, it is pushed onto a stack of compiled

patterns, and pcre2test expects the next line to contain a new pattern (or a command) instead of a

subject line. This facility is used when saving compiled patterns to a file, as described in the section

entitled "Saving and restoring compiled patterns" below. If pushcopy is used instead of push, a copy of

the compiled pattern is stacked, leaving the original as current, ready to match the following input

lines. This provides a way of testing the pcre2_code_copy() function. The push and pushcopy
modifiers are incompatible with compilation modifiers such as global that act at match time. Any that

are specified are ignored (for the stacked copy), with a warning message, except for replace, which

causes an error. Note that jitverify, which is allowed, does not carry through to any subsequent

matching that uses a stacked pattern.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Testing foreign pattern conversion
The experimental foreign pattern conversion functions in PCRE2 can be tested by setting the convert
modifier. Its argument is a colon-separated list of options, which set the equivalent option for the

pcre2_pattern_convert() function:

glob PCRE2_CONVERT_GLOB

glob_no_starstar PCRE2_CONVERT_GLOB_NO_STARSTAR

glob_no_wild_separator PCRE2_CONVERT_GLOB_NO_WILD_SEPARATOR

posix_basic PCRE2_CONVERT_POSIX_BASIC

posix_extended PCRE2_CONVERT_POSIX_EXTENDED

unset Unset all options

The "unset" value is useful for turning off a default that has been set by a #pattern command. When one

of these options is set, the input pattern is passed to pcre2_pattern_convert(). If the conversion is

successful, the result is reflected in the output and then passed to pcre2_compile(). The normal utf and

no_utf_check options, if set, cause the PCRE2_CONVERT_UTF and

PCRE2_CONVERT_NO_UTF_CHECK options to be passed to pcre2_pattern_convert().

By default, the conversion function is allowed to allocate a buffer for its output. However, if the

convert_length modifier is set to a value greater than zero, pcre2test passes a buffer of the given length.

This makes it possible to test the length check.

The convert_glob_escape and convert_glob_separator modifiers can be used to specify the escape and

separator characters for glob processing, overriding the defaults, which are operating-system

dependent.

SUBJECT MODIFIERS
The modifiers that can appear in subject lines and the #subject command are of two types.

Setting match options
The following modifiers set options for pcre2_match() or pcre2_dfa_match(). See pcreapi for a

description of their effects.

anchored set PCRE2_ANCHORED

endanchored set PCRE2_ENDANCHORED

dfa_restart set PCRE2_DFA_RESTART

dfa_shortest set PCRE2_DFA_SHORTEST

no_jit set PCRE2_NO_JIT

no_utf_check set PCRE2_NO_UTF_CHECK

notbol set PCRE2_NOTBOL

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

notempty set PCRE2_NOTEMPTY

notempty_atstart set PCRE2_NOTEMPTY_ATSTART

noteol set PCRE2_NOTEOL

partial_hard (or ph) set PCRE2_PARTIAL_HARD

partial_soft (or ps) set PCRE2_PARTIAL_SOFT

The partial matching modifiers are provided with abbreviations because they appear frequently in tests.

If the posix or posix_nosub modifier was present on the pattern, causing the POSIX wrapper API to be

used, the only option-setting modifiers that have any effect are notbol, notempty, and noteol, causing

REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, respectively, to be passed to regexec(). The

other modifiers are ignored, with a warning message.

There is one additional modifier that can be used with the POSIX wrapper. It is ignored (with a

warning) if used for non-POSIX matching.

posix_startend=<n>[:<m>]

This causes the subject string to be passed to regexec() using the REG_STARTEND option, which uses

offsets to specify which part of the string is searched. If only one number is given, the end offset is

passed as the end of the subject string. For more detail of REG_STARTEND, see the pcre2posix
documentation. If the subject string contains binary zeros (coded as escapes such as \x{00} because

pcre2test does not support actual binary zeros in its input), you must use posix_startend to specify its

length.

Setting match controls
The following modifiers affect the matching process or request additional information. Some of them

may also be specified on a pattern line (see above), in which case they apply to every subject line that

is matched against that pattern, but can be overridden by modifiers on the subject.

aftertext show text after match

allaftertext show text after captures

allcaptures show all captures

allvector show the entire ovector

allusedtext show all consulted text (non-JIT only)

altglobal alternative global matching

callout_capture show captures at callout time

callout_data=<n> set a value to pass via callouts

callout_error=<n>[:<m>] control callout error

callout_extra show extra callout information

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

callout_fail=<n>[:<m>] control callout failure

callout_no_where do not show position of a callout

callout_none do not supply a callout function

copy=<number or name> copy captured substring

depth_limit=<n> set a depth limit

dfa use pcre2_dfa_match()
find_limits find heap, match and depth limits

find_limits_noheap find match and depth limits

get=<number or name> extract captured substring

getall extract all captured substrings

/g global global matching

heap_limit=<n> set a limit on heap memory (Kbytes)

jitstack=<n> set size of JIT stack

mark show mark values

match_limit=<n> set a match limit

memory show heap memory usage

null_context match with a NULL context

null_replacement substitute with NULL replacement

null_subject match with NULL subject

offset=<n> set starting offset

offset_limit=<n> set offset limit

ovector=<n> set size of output vector

recursion_limit=<n> obsolete synonym for depth_limit

replace=<string> specify a replacement string

startchar show startchar when relevant

startoffset=<n> same as offset=<n>

substitute_callout use substitution callouts

substitute_extedded use PCRE2_SUBSTITUTE_EXTENDED

substitute_literal use PCRE2_SUBSTITUTE_LITERAL

substitute_matched use PCRE2_SUBSTITUTE_MATCHED

substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

substitute_replacement_only use PCRE2_SUBSTITUTE_REPLACEMENT_ONLY

substitute_skip=<n> skip substitution number n

substitute_stop=<n> skip substitution number n and greater

substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET

substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET_EMPTY

zero_terminate pass the subject as zero-terminated

The effects of these modifiers are described in the following sections. When matching via the POSIX

wrapper API, the aftertext, allaftertext, and ovector subject modifiers work as described below. All

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

other modifiers are either ignored, with a warning message, or cause an error.

Showing more text
The aftertext modifier requests that as well as outputting the part of the subject string that matched the

entire pattern, pcre2test should in addition output the remainder of the subject string. This is useful for

tests where the subject contains multiple copies of the same substring. The allaftertext modifier

requests the same action for captured substrings as well as the main matched substring. In each case the

remainder is output on the following line with a plus character following the capture number.

The allusedtext modifier requests that all the text that was consulted during a successful pattern match

by the interpreter should be shown, for both full and partial matches. This feature is not supported for

JIT matching, and if requested with JIT it is ignored (with a warning message). Setting this modifier

affects the output if there is a lookbehind at the start of a match, or, for a complete match, a lookahead

at the end, or if \K is used in the pattern. Characters that precede or follow the start and end of the

actual match are indicated in the output by ’<’ or ’>’ characters underneath them. Here is an example:

re> /(?<=pqr)abc(?=xyz)/

data> 123pqrabcxyz456\=allusedtext

0: pqrabcxyz

<<< >>>

data> 123pqrabcxy\=ph,allusedtext

Partial match: pqrabcxy

<<<

The first, complete match shows that the matched string is "abc", with the preceding and following

strings "pqr" and "xyz" having been consulted during the match (when processing the assertions). The

partial match can indicate only the preceding string.

The startchar modifier requests that the starting character for the match be indicated, if it is different to

the start of the matched string. The only time when this occurs is when \K has been processed as part of

the match. In this situation, the output for the matched string is displayed from the starting character

instead of from the match point, with circumflex characters under the earlier characters. For example:

re> /abc\Kxyz/

data> abcxyz\=startchar

0: abcxyz

^^^

Unlike allusedtext, the startchar modifier can be used with JIT. However, these two modifiers are

mutually exclusive.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Showing the value of all capture groups
The allcaptures modifier requests that the values of all potential captured parentheses be output after a

match. By default, only those up to the highest one actually used in the match are output

(corresponding to the return code from pcre2_match()). Groups that did not take part in the match are

output as "<unset>". This modifier is not relevant for DFA matching (which does no capturing) and

does not apply when replace is specified; it is ignored, with a warning message, if present.

Showing the entire ovector, for all outcomes
The allvector modifier requests that the entire ovector be shown, whatever the outcome of the match.

Compare allcaptures, which shows only up to the maximum number of capture groups for the pattern,

and then only for a successful complete non-DFA match. This modifier, which acts after any match

result, and also for DFA matching, provides a means of checking that there are no unexpected

modifications to ovector fields. Before each match attempt, the ovector is filled with a special value,

and if this is found in both elements of a capturing pair, "<unchanged>" is output. After a successful

match, this applies to all groups after the maximum capture group for the pattern. In other cases it

applies to the entire ovector. After a partial match, the first two elements are the only ones that should

be set. After a DFA match, the amount of ovector that is used depends on the number of matches that

were found.

Testing pattern callouts
A callout function is supplied when pcre2test calls the library matching functions, unless callout_none
is specified. Its behaviour can be controlled by various modifiers listed above whose names begin with

callout_. Details are given in the section entitled "Callouts" below. Testing callouts from

pcre2_substitute() is described separately in "Testing the substitution function" below.

Finding all matches in a string
Searching for all possible matches within a subject can be requested by the global or altglobal modifier.

After finding a match, the matching function is called again to search the remainder of the subject. The

difference between global and altglobal is that the former uses the start_offset argument to

pcre2_match() or pcre2_dfa_match() to start searching at a new point within the entire string (which is

what Perl does), whereas the latter passes over a shortened subject. This makes a difference to the

matching process if the pattern begins with a lookbehind assertion (including \b or \B).

If an empty string is matched, the next match is done with the PCRE2_NOTEMPTY_ATSTART and

PCRE2_ANCHORED flags set, in order to search for another, non-empty, match at the same point in

the subject. If this match fails, the start offset is advanced, and the normal match is retried. This

imitates the way Perl handles such cases when using the /g modifier or the split() function. Normally,

the start offset is advanced by one character, but if the newline convention recognizes CRLF as a

newline, and the current character is CR followed by LF, an advance of two characters occurs.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Testing substring extraction functions
The copy and get modifiers can be used to test the pcre2_substring_copy_xxx() and

pcre2_substring_get_xxx() functions. They can be given more than once, and each can specify a

capture group name or number, for example:

abcd\=copy=1,copy=3,get=G1

If the #subject command is used to set default copy and/or get lists, these can be unset by specifying a

negative number to cancel all numbered groups and an empty name to cancel all named groups.

The getall modifier tests pcre2_substring_list_get(), which extracts all captured substrings.

If the subject line is successfully matched, the substrings extracted by the convenience functions are

output with C, G, or L after the string number instead of a colon. This is in addition to the normal full

list. The string length (that is, the return from the extraction function) is given in parentheses after each

substring, followed by the name when the extraction was by name.

Testing the substitution function
If the replace modifier is set, the pcre2_substitute() function is called instead of one of the matching

functions (or after one call of pcre2_match() in the case of PCRE2_SUBSTITUTE_MATCHED). Note

that replacement strings cannot contain commas, because a comma signifies the end of a modifier. This

is not thought to be an issue in a test program.

Specifying a completely empty replacement string disables this modifier. However, it is possible to

specify an empty replacement by providing a buffer length, as described below, for an otherwise empty

replacement.

Unlike subject strings, pcre2test does not process replacement strings for escape sequences. In UTF

mode, a replacement string is checked to see if it is a valid UTF-8 string. If so, it is correctly converted

to a UTF string of the appropriate code unit width. If it is not a valid UTF-8 string, the individual code

units are copied directly. This provides a means of passing an invalid UTF-8 string for testing

purposes.

The following modifiers set options (in additional to the normal match options) for pcre2_substitute():

global PCRE2_SUBSTITUTE_GLOBAL

substitute_extended PCRE2_SUBSTITUTE_EXTENDED

substitute_literal PCRE2_SUBSTITUTE_LITERAL

substitute_matched PCRE2_SUBSTITUTE_MATCHED

substitute_overflow_length PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

substitute_replacement_only PCRE2_SUBSTITUTE_REPLACEMENT_ONLY

substitute_unknown_unset PCRE2_SUBSTITUTE_UNKNOWN_UNSET

substitute_unset_empty PCRE2_SUBSTITUTE_UNSET_EMPTY

See the pcre2api documentation for details of these options.

After a successful substitution, the modified string is output, preceded by the number of replacements.

This may be zero if there were no matches. Here is a simple example of a substitution test:

/abc/replace=xxx

=abc=abc=

1: =xxx=abc=

=abc=abc=\=global

2: =xxx=xxx=

Subject and replacement strings should be kept relatively short (fewer than 256 characters) for

substitution tests, as fixed-size buffers are used. To make it easy to test for buffer overflow, if the

replacement string starts with a number in square brackets, that number is passed to pcre2_substitute()
as the size of the output buffer, with the replacement string starting at the next character. Here is an

example that tests the edge case:

/abc/

123abc123\=replace=[10]XYZ

1: 123XYZ123

123abc123\=replace=[9]XYZ

Failed: error -47: no more memory

The default action of pcre2_substitute() is to return PCRE2_ERROR_NOMEMORY when the output

buffer is too small. However, if the PCRE2_SUBSTITUTE_OVERFLOW_LENGTH option is set (by

using the substitute_overflow_length modifier), pcre2_substitute() continues to go through the motions

of matching and substituting (but not doing any callouts), in order to compute the size of buffer that is

required. When this happens, pcre2test shows the required buffer length (which includes space for the

trailing zero) as part of the error message. For example:

/abc/substitute_overflow_length

123abc123\=replace=[9]XYZ

Failed: error -47: no more memory: 10 code units are needed

A replacement string is ignored with POSIX and DFA matching. Specifying partial matching provokes

an error return ("bad option value") from pcre2_substitute().

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Testing substitute callouts
If the substitute_callout modifier is set, a substitution callout function is set up. The null_context
modifier must not be set, because the address of the callout function is passed in a match context.

When the callout function is called (after each substitution), details of the the input and output strings

are output. For example:

/abc/g,replace=<$0>,substitute_callout

abcdefabcpqr

1(1) Old 0 3 "abc" New 0 5 "<abc>"

2(1) Old 6 9 "abc" New 8 13 "<abc>"

2: <abc>def<abc>pqr

The first number on each callout line is the count of matches. The parenthesized number is the number

of pairs that are set in the ovector (that is, one more than the number of capturing groups that were set).

Then are listed the offsets of the old substring, its contents, and the same for the replacement.

By default, the substitution callout function returns zero, which accepts the replacement and causes

matching to continue if /g was used. Two further modifiers can be used to test other return values. If

substitute_skip is set to a value greater than zero the callout function returns +1 for the match of that

number, and similarly substitute_stop returns -1. These cause the replacement to be rejected, and -1

causes no further matching to take place. If either of them are set, substitute_callout is assumed. For

example:

/abc/g,replace=<$0>,substitute_skip=1

abcdefabcpqr

1(1) Old 0 3 "abc" New 0 5 "<abc> SKIPPED"

2(1) Old 6 9 "abc" New 6 11 "<abc>"

2: abcdef<abc>pqr

abcdefabcpqr\=substitute_stop=1

1(1) Old 0 3 "abc" New 0 5 "<abc> STOPPED"

1: abcdefabcpqr

If both are set for the same number, stop takes precedence. Only a single skip or stop is supported,

which is sufficient for testing that the feature works.

Setting the JIT stack size
The jitstack modifier provides a way of setting the maximum stack size that is used by the just-in-time

optimization code. It is ignored if JIT optimization is not being used. The value is a number of

kibibytes (units of 1024 bytes). Setting zero reverts to the default of 32KiB. Providing a stack that is

larger than the default is necessary only for very complicated patterns. If jitstack is set non-zero on a

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

subject line it overrides any value that was set on the pattern.

Setting heap, match, and depth limits
The heap_limit, match_limit, and depth_limit modifiers set the appropriate limits in the match context.

These values are ignored when the find_limits or find_limits_noheap modifier is specified.

Finding minimum limits
If the find_limits modifier is present on a subject line, pcre2test calls the relevant matching function

several times, setting different values in the match context via pcre2_set_heap_limit(),
pcre2_set_match_limit(), or pcre2_set_depth_limit() until it finds the smallest value for each parameter

that allows the match to complete without a "limit exceeded" error. The match itself may succeed or

fail. An alternative modifier, find_limits_noheap, omits the heap limit. This is used in the standard

tests, because the minimum heap limit varies between systems. If JIT is being used, only the match

limit is relevant, and the other two are automatically omitted.

When using this modifier, the pattern should not contain any limit settings such as

(*LIMIT_MATCH=...) within it. If such a setting is present and is lower than the minimum matching

value, the minimum value cannot be found because pcre2_set_match_limit() etc. are only able to

reduce the value of an in-pattern limit; they cannot increase it.

For non-DFA matching, the minimum depth_limit number is a measure of how much nested

backtracking happens (that is, how deeply the pattern’s tree is searched). In the case of DFA matching,

depth_limit controls the depth of recursive calls of the internal function that is used for handling pattern

recursion, lookaround assertions, and atomic groups.

For non-DFA matching, the match_limit number is a measure of the amount of backtracking that takes

place, and learning the minimum value can be instructive. For most simple matches, the number is

quite small, but for patterns with very large numbers of matching possibilities, it can become large very

quickly with increasing length of subject string. In the case of DFA matching, match_limit controls the

total number of calls, both recursive and non-recursive, to the internal matching function, thus

controlling the overall amount of computing resource that is used.

For both kinds of matching, the heap_limit number, which is in kibibytes (units of 1024 bytes), limits

the amount of heap memory used for matching.

Showing MARK names
The mark modifier causes the names from backtracking control verbs that are returned from calls to

pcre2_match() to be displayed. If a mark is returned for a match, non-match, or partial match, pcre2test
shows it. For a match, it is on a line by itself, tagged with "MK:". Otherwise, it is added to the non-

match message.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Showing memory usage
The memory modifier causes pcre2test to log the sizes of all heap memory allocation and freeing calls

that occur during a call to pcre2_match() or pcre2_dfa_match(). In the latter case, heap memory is used

only when a match requires more internal workspace that the default allocation on the stack, so in

many cases there will be no output. No heap memory is allocated during matching with JIT. For this

modifier to work, the null_context modifier must not be set on both the pattern and the subject, though

it can be set on one or the other.

Setting a starting offset
The offset modifier sets an offset in the subject string at which matching starts. Its value is a number of

code units, not characters.

Setting an offset limit
The offset_limit modifier sets a limit for unanchored matches. If a match cannot be found starting at or

before this offset in the subject, a "no match" return is given. The data value is a number of code units,

not characters. When this modifier is used, the use_offset_limit modifier must have been set for the

pattern; if not, an error is generated.

Setting the size of the output vector
The ovector modifier applies only to the subject line in which it appears, though of course it can also be

used to set a default in a #subject command. It specifies the number of pairs of offsets that are available

for storing matching information. The default is 15.

A value of zero is useful when testing the POSIX API because it causes regexec() to be called with a

NULL capture vector. When not testing the POSIX API, a value of zero is used to cause

pcre2_match_data_create_from_pattern() to be called, in order to create a match block of exactly the

right size for the pattern. (It is not possible to create a match block with a zero-length ovector; there is

always at least one pair of offsets.)

Passing the subject as zero-terminated
By default, the subject string is passed to a native API matching function with its correct length. In

order to test the facility for passing a zero-terminated string, the zero_terminate modifier is provided. It

causes the length to be passed as PCRE2_ZERO_TERMINATED. When matching via the POSIX

interface, this modifier is ignored, with a warning.

When testing pcre2_substitute(), this modifier also has the effect of passing the replacement string as

zero-terminated.

Passing a NULL context, subject, or replacement
Normally, pcre2test passes a context block to pcre2_match(), pcre2_dfa_match(), pcre2_jit_match() or

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

pcre2_substitute(). If the null_context modifier is set, however, NULL is passed. This is for testing

that the matching and substitution functions behave correctly in this case (they use default values). This

modifier cannot be used with the find_limits, find_limits_noheap, or substitute_callout modifiers.

Similarly, for testing purposes, if the null_subject or null_replacement modifier is set, the subject or

replacement string pointers are passed as NULL, respectively, to the relevant functions.

THE ALTERNATIVE MATCHING FUNCTION
By default, pcre2test uses the standard PCRE2 matching function, pcre2_match() to match each subject

line. PCRE2 also supports an alternative matching function, pcre2_dfa_match(), which operates in a

different way, and has some restrictions. The differences between the two functions are described in the

pcre2matching documentation.

If the dfa modifier is set, the alternative matching function is used. This function finds all possible

matches at a given point in the subject. If, however, the dfa_shortest modifier is set, processing stops

after the first match is found. This is always the shortest possible match.

DEFAULT OUTPUT FROM pcre2test
This section describes the output when the normal matching function, pcre2_match(), is being used.

When a match succeeds, pcre2test outputs the list of captured substrings, starting with number 0 for the

string that matched the whole pattern. Otherwise, it outputs "No match" when the return is

PCRE2_ERROR_NOMATCH, or "Partial match:" followed by the partially matching substring when

the return is PCRE2_ERROR_PARTIAL. (Note that this is the entire substring that was inspected

during the partial match; it may include characters before the actual match start if a lookbehind

assertion, \K, \b, or \B was involved.)

For any other return, pcre2test outputs the PCRE2 negative error number and a short descriptive

phrase. If the error is a failed UTF string check, the code unit offset of the start of the failing character

is also output. Here is an example of an interactive pcre2test run.

$ pcre2test

PCRE2 version 10.22 2016-07-29

re> /^abc(\d+)/

data> abc123

0: abc123

1: 123

data> xyz

No match

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Unset capturing substrings that are not followed by one that is set are not shown by pcre2test unless the

allcaptures modifier is specified. In the following example, there are two capturing substrings, but

when the first data line is matched, the second, unset substring is not shown. An "internal" unset

substring is shown as "<unset>", as for the second data line.

re> /(a)|(b)/

data> a

0: a

1: a

data> b

0: b

1: <unset>

2: b

If the strings contain any non-printing characters, they are output as \xhh escapes if the value is less

than 256 and UTF mode is not set. Otherwise they are output as \x{hh...} escapes. See below for the

definition of non-printing characters. If the aftertext modifier is set, the output for substring 0 is

followed by the the rest of the subject string, identified by "0+" like this:

re> /cat/aftertext

data> cataract

0: cat

0+ aract

If global matching is requested, the results of successive matching attempts are output in sequence, like

this:

re> /\Bi(\w\w)/g

data> Mississippi

0: iss

1: ss

0: iss

1: ss

0: ipp

1: pp

"No match" is output only if the first match attempt fails. Here is an example of a failure message (the

offset 4 that is specified by the offset modifier is past the end of the subject string):

re> /xyz/

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

data> xyz\=offset=4

Error -24 (bad offset value)

Note that whereas patterns can be continued over several lines (a plain ">" prompt is used for

continuations), subject lines may not. However newlines can be included in a subject by means of the

\n escape (or \r, \r\n, etc., depending on the newline sequence setting).

OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
When the alternative matching function, pcre2_dfa_match(), is used, the output consists of a list of all

the matches that start at the first point in the subject where there is at least one match. For example:

re> /(tang|tangerine|tan)/

data> yellow tangerine\=dfa

0: tangerine

1: tang

2: tan

Using the normal matching function on this data finds only "tang". The longest matching string is

always given first (and numbered zero). After a PCRE2_ERROR_PARTIAL return, the output is

"Partial match:", followed by the partially matching substring. Note that this is the entire substring that

was inspected during the partial match; it may include characters before the actual match start if a

lookbehind assertion, \b, or \B was involved. (\K is not supported for DFA matching.)

If global matching is requested, the search for further matches resumes at the end of the longest match.

For example:

re> /(tang|tangerine|tan)/g

data> yellow tangerine and tangy sultana\=dfa

0: tangerine

1: tang

2: tan

0: tang

1: tan

0: tan

The alternative matching function does not support substring capture, so the modifiers that are

concerned with captured substrings are not relevant.

RESTARTING AFTER A PARTIAL MATCH
When the alternative matching function has given the PCRE2_ERROR_PARTIAL return, indicating

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

that the subject partially matched the pattern, you can restart the match with additional subject data by

means of the dfa_restart modifier. For example:

re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

data> 23ja\=ps,dfa

Partial match: 23ja

data> n05\=dfa,dfa_restart

0: n05

For further information about partial matching, see the pcre2partial documentation.

CALLOUTS
If the pattern contains any callout requests, pcre2test’s callout function is called during matching unless

callout_none is specified. This works with both matching functions, and with JIT, though there are

some differences in behaviour. The output for callouts with numerical arguments and those with string

arguments is slightly different.

Callouts with numerical arguments
By default, the callout function displays the callout number, the start and current positions in the

subject text at the callout time, and the next pattern item to be tested. For example:

--->pqrabcdef

0 ^ ^ \d

This output indicates that callout number 0 occurred for a match attempt starting at the fourth character

of the subject string, when the pointer was at the seventh character, and when the next pattern item was

\d. Just one circumflex is output if the start and current positions are the same, or if the current position

precedes the start position, which can happen if the callout is in a lookbehind assertion.

Callouts numbered 255 are assumed to be automatic callouts, inserted as a result of the auto_callout
pattern modifier. In this case, instead of showing the callout number, the offset in the pattern, preceded

by a plus, is output. For example:

re> /\d?[A-E]*/auto_callout

data> E*

--->E*

+0 ^ \d?

+3 ^ [A-E]

+8 ^^ *

+10 ^ ^

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

0: E*

If a pattern contains (*MARK) items, an additional line is output whenever a change of latest mark is

passed to the callout function. For example:

re> /a(*MARK:X)bc/auto_callout

data> abc

--->abc

+0 ^ a

+1 ^^ (*MARK:X)

+10 ^^ b

Latest Mark: X

+11 ^ ^ c

+12 ^ ^

0: abc

The mark changes between matching "a" and "b", but stays the same for the rest of the match, so

nothing more is output. If, as a result of backtracking, the mark reverts to being unset, the text

"<unset>" is output.

Callouts with string arguments
The output for a callout with a string argument is similar, except that instead of outputting a callout

number before the position indicators, the callout string and its offset in the pattern string are output

before the reflection of the subject string, and the subject string is reflected for each callout. For

example:

re> /^ab(?C’first’)cd(?C"second")ef/

data> abcdefg

Callout (7): ’first’

--->abcdefg

^ ^ c

Callout (20): "second"

--->abcdefg

^ ^ e

0: abcdef

Callout modifiers
The callout function in pcre2test returns zero (carry on matching) by default, but you can use a

callout_fail modifier in a subject line to change this and other parameters of the callout (see below).

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

If the callout_capture modifier is set, the current captured groups are output when a callout occurs. This

is useful only for non-DFA matching, as pcre2_dfa_match() does not support capturing, so no captures

are ever shown.

The normal callout output, showing the callout number or pattern offset (as described above) is

suppressed if the callout_no_where modifier is set.

When using the interpretive matching function pcre2_match() without JIT, setting the callout_extra
modifier causes additional output from pcre2test’s callout function to be generated. For the first callout

in a match attempt at a new starting position in the subject, "New match attempt" is output. If there has

been a backtrack since the last callout (or start of matching if this is the first callout), "Backtrack" is

output, followed by "No other matching paths" if the backtrack ended the previous match attempt. For

example:

re> /(a+)b/auto_callout,no_start_optimize,no_auto_possess

data> aac\=callout_extra

New match attempt

--->aac

+0 ^ (

+1 ^ a+

+3 ^ ^)

+4 ^ ^ b

Backtrack

--->aac

+3 ^^)

+4 ^^ b

Backtrack

No other matching paths

New match attempt

--->aac

+0 ^ (

+1 ^ a+

+3 ^^)

+4 ^^ b

Backtrack

No other matching paths

New match attempt

--->aac

+0 ^ (

+1 ^ a+

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

Backtrack

No other matching paths

New match attempt

--->aac

+0 ^ (

+1 ^ a+

No match

Notice that various optimizations must be turned off if you want all possible matching paths to be

scanned. If no_start_optimize is not used, there is an immediate "no match", without any callouts,

because the starting optimization fails to find "b" in the subject, which it knows must be present for any

match. If no_auto_possess is not used, the "a+" item is turned into "a++", which reduces the number of

backtracks.

The callout_extra modifier has no effect if used with the DFA matching function, or with JIT.

Return values from callouts
The default return from the callout function is zero, which allows matching to continue. The

callout_fail modifier can be given one or two numbers. If there is only one number, 1 is returned

instead of 0 (causing matching to backtrack) when a callout of that number is reached. If two numbers

(<n>:<m>) are given, 1 is returned when callout <n> is reached and there have been at least <m>

callouts. The callout_error modifier is similar, except that PCRE2_ERROR_CALLOUT is returned,

causing the entire matching process to be aborted. If both these modifiers are set for the same callout

number, callout_error takes precedence. Note that callouts with string arguments are always given the

number zero.

The callout_data modifier can be given an unsigned or a negative number. This is set as the "user data"

that is passed to the matching function, and passed back when the callout function is invoked. Any

value other than zero is used as a return from pcre2test’s callout function.

Inserting callouts can be helpful when using pcre2test to check complicated regular expressions. For

further information about callouts, see the pcre2callout documentation.

NON-PRINTING CHARACTERS
When pcre2test is outputting text in the compiled version of a pattern, bytes other than 32-126 are

always treated as non-printing characters and are therefore shown as hex escapes.

When pcre2test is outputting text that is a matched part of a subject string, it behaves in the same way,

unless a different locale has been set for the pattern (using the locale modifier). In this case, the

isprint() function is used to distinguish printing and non-printing characters.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

SAVING AND RESTORING COMPILED PATTERNS
It is possible to save compiled patterns on disc or elsewhere, and reload them later, subject to a number

of restrictions. JIT data cannot be saved. The host on which the patterns are reloaded must be running

the same version of PCRE2, with the same code unit width, and must also have the same endianness,

pointer width and PCRE2_SIZE type. Before compiled patterns can be saved they must be serialized,

that is, converted to a stream of bytes. A single byte stream may contain any number of compiled

patterns, but they must all use the same character tables. A single copy of the tables is included in the

byte stream (its size is 1088 bytes).

The functions whose names begin with pcre2_serialize_ are used for serializing and de-serializing.

They are described in the pcre2serialize documentation. In this section we describe the features of

pcre2test that can be used to test these functions.

Note that "serialization" in PCRE2 does not convert compiled patterns to an abstract format like Java or

.NET. It just makes a reloadable byte code stream. Hence the restrictions on reloading mentioned

above.

In pcre2test, when a pattern with push modifier is successfully compiled, it is pushed onto a stack of

compiled patterns, and pcre2test expects the next line to contain a new pattern (or command) instead of

a subject line. By contrast, the pushcopy modifier causes a copy of the compiled pattern to be stacked,

leaving the original available for immediate matching. By using push and/or pushcopy, a number of

patterns can be compiled and retained. These modifiers are incompatible with posix, and control

modifiers that act at match time are ignored (with a message) for the stacked patterns. The jitverify
modifier applies only at compile time.

The command

#save <filename>

causes all the stacked patterns to be serialized and the result written to the named file. Afterwards, all

the stacked patterns are freed. The command

#load <filename>

reads the data in the file, and then arranges for it to be de-serialized, with the resulting compiled

patterns added to the pattern stack. The pattern on the top of the stack can be retrieved by the #pop

command, which must be followed by lines of subjects that are to be matched with the pattern,

terminated as usual by an empty line or end of file. This command may be followed by a modifier list

containing only control modifiers that act after a pattern has been compiled. In particular, hex, posix,

posix_nosub, push, and pushcopy are not allowed, nor are any option-setting modifiers. The JIT

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

modifiers are, however permitted. Here is an example that saves and reloads two patterns.

/abc/push

/xyz/push

#save tempfile

#load tempfile

#pop info

xyz

#pop jit,bincode

abc

If jitverify is used with #pop, it does not automatically imply jit, which is different behaviour from

when it is used on a pattern.

The #popcopy command is analogous to the pushcopy modifier in that it makes current a copy of the

topmost stack pattern, leaving the original still on the stack.

SEE ALSO
pcre2(3), pcre2api(3), pcre2callout(3), pcre2jit, pcre2matching(3), pcre2partial(d), pcre2pattern(3),

pcre2serialize(3).

AUTHOR
Philip Hazel

Retired from University Computing Service

Cambridge, England.

REVISION
Last updated: 27 July 2022

Copyright (c) 1997-2022 University of Cambridge.

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

