PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

NAME
pcre2test - a program for testing Perl-compatible regular expressions.

SYNOPSIS
pcre2test [options] [input file [output file]]

pcre2test is atest program for the PCRE2 regular expression libraries, but it can also be used for
experimenting with regular expressions. This document describes the features of the test program; for
details of the regular expressions themselves, see the pcre2patter n documentation. For details of the
PCRE2 library function calls and their options, see the pcre2api documentation.

Theinput for pcre2test is a sequence of regular expression patterns and subject strings to be matched.
There are also command lines for setting defaults and controlling some special actions. The output
shows the result of each match attempt. Modifiers on external or internal command lines, the patterns,
and the subject lines specify PCRE2 function options, control how the subject is processed, and what
output is produced.

There are many obscure modifiers, some of which are specifically designed for use in conjunction with
the test script and data files that are distributed as part of PCRE2. All the modifiers are documented
here, some without much justification, but many of them are unlikely to be of use except when testing
the libraries.

PCREZ2's8-BIT, 16-BIT AND 32-BIT LIBRARIES
Different versions of the PCRE2 library can be built to support character strings that are encoded in
8-bit, 16-hit, or 32-bit code units. One, two, or all three of these libraries may be simultaneously
installed. The pcre2test program can be used to test all the libraries. However, its own input and output
are alwaysin 8-bit format. When testing the 16-bit or 32-hit libraries, patterns and subject strings are
converted to 16-hit or 32-hit format before being passed to the library functions. Results are converted
back to 8-bit code units for output.

In the rest of this document, the names of library functions and structures are given in generic form, for
example, pcre2_compile(). The actual names used in the libraries have a suffix _8, 16, or _32, as

appropriate.

INPUT ENCODING
Input to pcre2test is processed line by line, either by calling the C library’ s fgets() function, or viathe
libreadline or libedit library. In some Windows environments character 26 (hex 1A) causes an
immediate end of file, and no further datais read, so this character should be avoided unless you really
want that action.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

Theinput is processed using using C' s string functions, so must not contain binary zeros, even though
in Unix-like environments, fgets() treats any bytes other than newline as data characters. An error is
generated if abinary zero is encountered. By default subject lines are processed for backslash escapes,
which makesit possible to include any data value in strings that are passed to the library for matching.
For patterns, there is afacility for specifying some or all of the 8-bit input characters as hexadecimal
pairs, which makes it possible to include binary zeros.

Input for the 16-bit and 32-bit libraries
When testing the 16-bit or 32-bit libraries, there is a need to be able to generate character code points
greater than 255 in the strings that are passed to the library. For subject lines, backslash escapes can be
used. In addition, when the utf modifier (see " Setting compilation options" below) is set, the pattern
and any following subject lines are interpreted as UTF-8 strings and trandlated to UTF-16 or UTF-32 as

appropriate.

For non-UTF testing of wide characters, the utf8_input modifier can be used. Thisis mutualy
exclusive with utf, and is alowed only in 16-bit or 32-bit mode. It causes the pattern and following
subject lines to be treated as UTF-8 according to the origina definition (RFC 2279), which alows for
character values up to Ox7fffffff. Each character is placed in one 16-bit or 32-bit code unit (in the 16-bit
case, values greater than Oxffff cause an error to occur).

UTF-8 (initsoriginal definition) is not capable of encoding values greater than Ox7fffffff, but such
values can be handled by the 32-bit library. When testing this library in non-UTF mode with utf8_input
set, if any character is preceded by the byte Oxff (which isan invalid byte in UTF-8) 0x80000000 is
added to the character’ s value. Thisisthe only way of passing such code pointsin a pattern string. For
subject strings, using an escape sequence is preferable.

COMMAND LINE OPTIONS
-8 If the 8-hit library has been built, this option causesit to be used (thisis the default). If the
8-bit library has not been built, this option causes an error.

-16 If the 16-bit library has been built, this option causesit to be used. If only the 16-bit library
has been built, thisis the default. If the 16-bit library has not been built, this option causes
an error.

-32 If the 32-bit library has been built, this option causesit to be used. If only the 32-bit library
has been built, thisis the default. If the 32-bit library has not been built, this option causes
an error.

-ac Behave asif each pattern has the auto_callout modifier, that is, insert automatic callouts

into every pattern that is compiled.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(2) FreeBSD General Commands Manual PCRE2TEST(1)

-AC Asfor -ac, but in addition behave asif each subject line has the callout_extra modifier, that
is, show additional information from callouts.

-b Behave asif each pattern has the fullbincode modifier; the full internal binary form of the
pattern is output after compilation.

-C Output the version number of the PCRE2 library, and all available information about the
optional features that are included, and then exit with zero exit code. All other options are
ignored. If both -C and -LM are present, whichever isfirst is recognized.

-C option Output information about a specific build-time option, then exit. This functionality is
intended for use in scripts such as RunTest. The following options output the value and set
the exit code as indicated:

ebcdic-nl the code for LF (= NL) in an EBCDIC environment:
0x15 or 0x25
0if used in an ASCII environment
exit codeisaways0

linksize the configured internal link size (2, 3, or 4)
exit codeisset tothelink size

newline the default newline setting:
CR, LF, CRLF, ANYCRLF, ANY, or NUL
exit codeisaways0

bsr the default setting for what \R matches:
ANYCRLF or ANY
exit codeisalways0

The following options output 1 for true or O for false, and set the exit code to the same
value:

backslash-C \C is supported (not locked out)
ebcdic compiled for an EBCDIC environment
jit just-in-time support is available
pcre2-16 the 16-bit library was built

pcre2-32 the 32-bit library was built

pcre2-8 the 8-bit library was built

unicode Unicode support is available

If an unknown option is given, an error message is output; the exit code is 0.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1)

-d

-dfa

FreeBSD General Commands Manual PCRE2TEST(1)

Behave asif each pattern has the debug modifier; the internal form and information about
the compiled pattern is output after compilation; -d isequivalent to -b -i.

Behave as if each subject line has the dfa modifier; matching is done using the
pcre2_dfa_match() function instead of the default pcre2_match().

-error number[,number,...]

-help

it

jitfast

-jitverify

-LM

-LP

-LS

PCRE 10.41

Call pcre2_get_error_message() for each of the error numbers in the comma-separated list,
display the resulting messages on the standard output, then exit with zero exit code. The
numbers may be positive or negative. Thisis a convenience facility for PCRE2

maintainers.

Output a brief summary these options and then exit.

Behave as if each pattern has the info modifier; information about the compiled patternis
given after compilation.

Behave as if each pattern line has the jit modifier; after successful compilation, each
pattern is passed to the just-in-time compiler, if available.

Behave asif each pattern line has the jitfast modifier; after successful compilation, each
pattern is passed to the just-in-time compiler, if available, and each subject line is passed
directly to the J'T matcher viaits "fast path”.

Behave as if each pattern line has the jitverify modifier; after successful compilation, each
pattern is passed to the just-in-time compiler, if available, and the use of JIT for matching
isverified.

List modifiers: write alist of available pattern and subject modifiersto the standard output,
then exit with zero exit code. All other options areignored. If both -C and any -Lx options
are present, whichever isfirst is recognized.

List properties: write alist of recognized Unicode properties to the standard output, then
exit with zero exit code. All other options are ignored. If both -C and any -Lx options are
present, whichever isfirst is recognized.

List scripts: write alist of recognized Unicode script names to the standard output, then

exit with zero exit code. All other options are ignored. If both -C and any -Lx options are
present, whichever isfirst is recognized.

27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

-pattern modifier-list
Behave as if each pattern line contains the given modifiers.

-q Do not output the version number of pcre2test at the start of execution.

-Ssize On Unix-like systems, set the size of the run-time stack to size mebibytes (units of
1024* 1024 bytes).

-subject modifier-list
Behave as if each subject line contains the given modifiers.

-t Run each compile and match many times with atimer, and output the resulting times per
compile or match. When JIT is used, separate times are given for the initial compile and
the J'T compile. Y ou can control the number of iterations that are used for timing by
following -t with a number (as a separate item on the command line). For example, "-t
1000" iterates 1000 times. The default isto iterate 500,000 times.

-tm Thisislike -t except that it times only the matching phase, not the compile phase.

-T-TM These behave like -t and -tm, but in addition, at the end of arun, the total timesfor all
compiles and matches are outpui.

-version Output the PCRE2 version number and then exit.

DESCRIPTION
If pcre2test is given two filename arguments, it reads from the first and writes to the second. If the first
nameis"-", input is taken from the standard input. If pcre2test is given only one argument, it reads
from that file and writes to stdout. Otherwise, it reads from stdin and writes to stdout.

When pcre2test is built, a configuration option can specify that it should be linked with the libreadline
or libedit library. When thisis done, if the input isfrom aterminal, it isread using the readling()
function. This provides line-editing and history facilities. The output from the -help option states
whether or not readling() will be used.

The program handles any number of tests, each of which consists of a set of input lines. Each set starts
with aregular expression pattern, followed by any number of subject lines to be matched against that
pattern. In between sets of test data, command lines that begin with # may appear. Thisfile format,
with some restrictions, can also be processed by the perltest.sh script that is distributed with PCRE2 as
ameans of checking that the behaviour of PCRE2 and Perl is the same. For a specification of
perltest.sh, see the comments near its beginning. See also the #perltest command below.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

When the input is aterminal, pcre2test prompts for each line of input, using "re>" to prompt for regular
expression patterns, and "data>" to prompt for subject lines. Command lines starting with # can be
entered only in response to the "re>" prompt.

Each subject lineis matched separately and independently. If you want to do multi-line matches, you
have to use the \n escape sequence (or \r or \r\n, etc., depending on the newline setting) in asingle line
of input to encode the newline sequences. Thereis no limit on the length of subject lines; the input
buffer is automatically extended if it istoo small. There are replication features that makesit possible
to generate long repetitive pattern or subject lines without having to supply them explicitly.

An empty line or the end of the file signals the end of the subject lines for atest, at which point a new
pattern or command line is expected if thereis still input to be read.

COMMAND LINES
In between sets of test data, aline that begins with # isinterpreted as a command line. If the first
character is followed by white space or an exclamation mark, the line is treated as a comment, and
ignored. Otherwise, the following commands are recogni zed:

#forbid_utf

Subsequent patterns automatically have the PCRE2_NEVER_UTF and PCRE2_NEVER_UCP options
set, which locks out the use of the PCRE2_UTF and PCRE2_UCP options and the use of (*UTF) and
(*UCP) at the start of patterns. This command also forces an error if a subsequent pattern contains any
occurrences of \P, \p, or \X, which are still supported when PCRE2_UTF is hot set, but which require
Unicode property support to be included in the library.

Thisisatrigger guard that is used in test files to ensure that UTF or Unicode property tests are not
accidentally added to files that are used when Unicode support is not included in the library. Setting
PCRE2 NEVER UTF and PCRE2_ NEVER_UCP as adefault can also be obtained by the use of
#pattern; the difference isthat #forbid_utf cannot be unset, and the automatic options are not displayed
in pattern information, to avoid cluttering up test output.

#load <filename>

This command is used to load a set of precompiled patterns from afile, as described in the section
entitled " Saving and restoring compiled patterns’ below.

#l oadtables <filename>

This command is used to load a set of binary character tables that can be accessed by the tables=3

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

qualifier. Such tables can be created by the pcre2_dftables program with the -b option.
#newline_default [<newline-list>]

When PCREZ2 is built, a default newline convention can be specified. This determines which characters
and/or character pairs are recognized as indicating a newline in a pattern or subject string. The default
can be overridden when a pattern is compiled. The standard test files contain tests of various newline
conventions, but the majority of the tests expect a single linefeed to be recognized as a newline by
default. Without special action the tests would fail when PCRE2 is compiled with either CR or CRLF
as the default newline.

The #newline_default command specifies alist of newline types that are acceptable as the default. The
types must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in upper or lower case), for example:

#newline_default LF Any anyCRLF

If the default newlineisin the list, this command has no effect. Otherwise, except when testing the
POSIX API, anewline modifier that specifies the first newline convention in the list (LF in the above
example) is added to any pattern that does not already have a newline modifier. If the newlinelistis
empty, the feature is turned off. This command is present in a number of the standard test input files.

When the POSIX API is being tested there is no way to override the default newline convention,
though it is possible to set the newline convention from within the pattern. A warning is given if the
posix or posix_nosub modifier is used when #newline_default would set a default for the non-POSI X
API.

#pattern <modifier-list>

This command sets a default modifier list that applies to all subsequent patterns. Modifiers on a pattern
can change these settings.

#perltest
Thislineisused in test files that can also be processed by perltest.sh to confirm that Perl gives the
same results as PCRE2. Subsequent tests are checked for the use of pcre2test features that are
incompatible with the perltest.sh script.
Patterns must use '/’ astheir delimiter, and only certain modifiers are supported. Comment lines,

#pattern commands, and #subject commands that set or unset "mark" are recognized and acted on. The
#perltest, #forbid_utf, and #newline_default commands, which are needed in the relevant pcre2test

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST (1)

files, are silently ignored. All other command lines are ignored, but give awarning message. The
#perltest command hel ps detect tests that are accidentally put in the wrong file or use the wrong
delimiter. For more details of the perltest.sh script see the comments it contains.

#pop [<modifiers>]
#popcopy [<modifiers>]

These commands are used to manipulate the stack of compiled patterns, as described in the section
entitled " Saving and restoring compiled patterns” below.

#save <filename>

This command is used to save a set of compiled patterns to afile, as described in the section entitled
"Saving and restoring compiled patterns' below.

#subject <modifier-list>

This command sets a default modifier list that applies to all subsequent subject lines. Modifierson a
subject line can change these settings.

MODIFIER SYNTAX
Modifier lists are used with both pattern and subject lines. Itemsin alist are separated by commas
followed by optional white space. Trailing whitespace in amodifier list isignored. Some modifiers
may be given for both patterns and subject lines, whereas others are valid only for one or the other.
Each modifier has along name, for example "anchored”, and some of them must be followed by an
equals sign and a value, for example, "offset=12". Values cannot contain comma characters, but may
contain spaces. Modifiers that do not take values may be preceded by a minus sign to turn off a
previous setting.

A few of the more common modifiers can also be specified as single letters, for example "i" for
"caseless'. In documentation, following the Perl convention, these are written with aslash ("the /i
modifier") for clarity. Abbreviated modifiers must all be concatenated in the first item of a modifier
list. If the first item is not recognized as along modifier name, it isinterpreted as a sequence of these
abbreviations. For example:

fabclig,newline=cr jit=3

Thisis a pattern line whose modifier list starts with two one-letter modifiers (/i and /g). The lower-case
abbreviated modifiers are the same as used in Perl.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

PATTERN SYNTAX
A pattern line must start with one of the following characters (common symbols, excluding pattern
meta-characters):

[e= %8 @~

Thisisinterpreted as the pattern’s delimiter. A regular expression may be continued over several input
lines, in which case the newline characters are included within it. It is possible to include the delimiter
as aliteral within the pattern by escaping it with a backslash, for example

/abc\/def/

If you do this, the escape and the delimiter form part of the pattern, but since the delimiters are all non-
alphanumeric, the inclusion of the backslash does not affect the pattern’ s interpretation. Note, however,
that thistrick does not work within \Q...\E literal bracketing because the backslash will itself be
interpreted as aliteral. If the terminating delimiter isimmediately followed by a backslash, for
example,

labch\

then a backslash is added to the end of the pattern. This is done to provide away of testing the error
condition that arisesif a pattern finishes with a backslash, because

labcV

isinterpreted asthe first line of a pattern that starts with "abc/", causing pcre2test to read the next line
as a continuation of the regular expression.

A pattern can be followed by amodifier list (details below).

SUBJECT LINE SYNTAX
Before each subject line is passed to pcre2_match(), pcre2_dfa _match(), or pcre2_jit_match(), leading
and trailing white space is removed, and the line is scanned for backslash escapes, unless the
subject_literal modifier was set for the pattern. The following provide a means of encoding non-
printing charactersin avisible way:

\a aarm (BEL, \x07)
\b backspace (\x08)

\e escape (\x27)
\f form feed (\xQOc)

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

\n newline (\x0a)
\r carriage return (\x0d)
\t tab (\x09)
\v vertical tab (\x0Ob)
\nnn octa character (up to 3 octal digits); always
abyte unless > 255 in UTF-8 or 16-bit or 32-bit mode
\o{dd...} octa character (any number of octal digits}
\xhh hexadecimal byte (up to 2 hex digits)
\x{hh...} hexadecimal character (any number of hex digits)

The use of \x{ hh...} is not dependent on the use of the utf modifier on the pattern. It is recognized
always. There may be any number of hexadecimal digits inside the braces; invalid values provoke error

messages.

Note that \xhh specifies one byte rather than one character in UTF-8 mode; this makes it possible to
construct invalid UTF-8 sequences for testing purposes. On the other hand, \x{ hh} isinterpreted asa
UTF-8 character in UTF-8 mode, generating more than one byte if the value is greater than 127. When

testing the 8-bit library not in UTF-8 mode, \x{ hh} generates one byte for values less than 256, and
causes an error for greater values.

In UTF-16 mode, all 4-digit \x{ hhhh} values are accepted. This makes it possible to construct invalid
UTF-16 sequences for testing purposes.

In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makesit possible to construct invalid
UTF-32 sequences for testing purposes.

There is a specia backslash sequence that specifies replication of one or more characters:
\[<characters>]{ <count>}

This makes it possible to test long strings without having to provide them as part of the file. For
example:

\[abc]{ 4}

is converted to "abcabcabcabc”. This feature does not support nesting. To include a closing square
bracket in the characters, codeit as \x5D.

A backdlash followed by an equals sign marks the end of the subject string and the start of a modifier
list. For example:

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

abc\=notbol ,notempty

If the subject string is empty and \= is followed by whitespace, the line is treated as a comment line,
and is not used for matching. For example:

\= Thisis acomment.
abc\=Thisisan invalid modifier list.

A backdash followed by any other non-alphanumeric character just escapes that character. A backslash
followed by anything else causes an error. However, if the very last character in the lineis a backslash
(and there is no modifier list), it isignored. This gives away of passing an empty line as data, since a
real empty line terminates the data input.

If the subject_literal modifier is set for a pattern, all subject lines that follow are treated as literals, with
no special treatment of backslashes. No replication is possible, and any subject modifiers must be set
as defaults by a#subject command.

PATTERN MODIFIERS
There are several types of modifier that can appear in pattern lines. Except where noted below, they
may also be used in #pattern commands. A pattern’s modifier list can add to or override default
modifiers that were set by a previous #pattern command.

Setting compilation options
The following modifiers set options for pcre2_compile(). Most of them set bits in the options argument
of that function, but those whose names start with PCRE2_EXTRA are additional options that are setin
the compile context. For the main options, there are some single-letter abbreviations that are the same
as Perl options. Thereis special handling for /x: if asecond x is present, PCRE2 EXTENDED is
converted into PCRE2 EXTENDED MORE asin Perl. A third appearance adds PCRE2 EXTENDED
aswell, though this makes no difference to the way pcre2_compile() behaves. See pcre2api for a
description of the effects of these options.

alow_empty class set PCRE2 ALLOW_EMPTY_CLASS
allow_lookaround_bsk set PCRE2 EXTRA_ALLOW_LOOKAROUND_BSK
alow_surrogate escapes set PCRE2 EXTRA_ALLOW_SURROGATE_ESCAPES

alt_bsux set PCRE2 ALT BSUX
alt_circumflex set PCRE2 ALT _CIRCUMFLEX
alt_verbnames set PCRE2 ALT VERBNAMES
anchored set PCRE2 ANCHORED
auto_callout set PCRE2 AUTO _CALLOUT

bad_escape is literal st PCRE2_ EXTRA_BAD_ESCAPE_IS LITERAL

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

/i caseless set PCRE2_CASELESS
dollar_endonly set PCRE2_ DOLLAR_ENDONLY
/s dotall set PCRE2_DOTALL
dupnames set PCRE2_DUPNAMES
endanchored set PCRE2_ENDANCHORED
escaped _cr_js If set PCRE2_EXTRA_ESCAPED CR IS LF
Ix extended set PCRE2_EXTENDED
Ixx extended_more set PCRE2_ EXTENDED_MORE
extra_alt_bsux set PCRE2_EXTRA_ALT_BSUX
firstline set PCRE2_FIRSTLINE
literal set PCRE2_LITERAL
match_line set PCRE2_EXTRA_MATCH_LINE

match_invalid utf set PCRE2 MATCH_INVALID _UTF
match_unset_backref set PCRE2_ MATCH_UNSET BACKREF

match_word set PCRE2_EXTRA_MATCH_WORD
/m multiline set PCRE2_MULTILINE

never_backsash ¢ set PCRE2 NEVER_BACKSLASH C

never_ucp set PCRE2_NEVER _UCP

never_utf set PCRE2_NEVER_UTF

/n no_auto_capture set PCRE2 NO_AUTO_CAPTURE
Nno_auto_possess set PCRE2 NO_AUTO_POSSESS
no_dotstar_anchor set PCRE2_ NO_DOTSTAR_ANCHOR
no_start_optimize set PCRE2_NO_START_OPTIMIZE

no_utf_check set PCRE2 NO_UTF_CHECK
ucp set PCRE2_UCP

ungreedy set PCRE2_UNGREEDY
use_offset_limit set PCRE2_USE_OFFSET_LIMIT
utf set PCRE2_UTF

Aswell asturning on the PCRE2_UTF option, the utf modifier causes all non-printing charactersin
output strings to be printed using the \x{ hh...} notation. Otherwise, those less than 0x100 are output in
hex without the curly brackets. Setting utf in 16-bit or 32-bit mode also causes pattern and subject
strings to be trandated to UTF-16 or UTF-32, respectively, before being passed to library functions.

Setting compilation controls
The following modifiers affect the compilation process or request information about the pattern. There

are single-letter abbreviations for some that are heavily used in the test files.

bsr=[anycrlflunicode] specify \R handling
/B bincode show binary code without lengths

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

callout_info show callout information
convert=<options> reguest foreign pattern conversion
convert glob _escape=c set glob escape character
convert_glob separator=c set glob separator character

convert_length set convert buffer length
debug same asinfo,fullbincode
framesize show matching frame size
fullbincode show binary code with lengths

/I info show info about compiled pattern
hex unquoted characters are hexadecimal
jitf=<number>] useJIT
jitfast use JIT fast path
jitverify verify JIT use
locale=<name> usethislocale
max_pattern_length=<n> set the maximum pattern length
memory show memory used
newline=<type> set newline type
null_context compile with aNULL context
parens nest_limit=<n> set maximum parentheses depth
posix use the POSIX API
posix_nosub use the POSIX APl with REG_NOSUB
push push compiled pattern onto the stack
pushcopy push a copy onto the stack
stackguard=<number> test the stackguard feature
subject_litera treat al subject lines as literal
tables=[01]2|3] select internal tables
use length do not zero-terminate the pattern
utf8 input treat input as UTF-8

The effects of these modifiers are described in the following sections.

Newline and \R handling
The bsr modifier specifieswhat \R in a pattern should match. If it is set to "anycrlf", \R matches CR,
LF, or CRLF only. If it isset to "unicode”, \R matches any Unicode newline sequence. The default can
be specified when PCRE2 is built; if it is not, the default is set to Unicode.

The newline modifier specifies which characters are to be interpreted as newlines, both in the pattern

and in subject lines. The type must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in upper or
lower case).

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

Information about a pattern
The debug modifier is a shorthand for info,fullbincode, requesting all available information.

The bincode modifier causes a representation of the compiled code to be output after compilation. This
information does not contain length and offset values, which ensures that the same output is generated
for different internal link sizes and different code unit widths. By using bincode, the same regression
tests can be used in different environments.

The fullbincode modifier, by contrast, does include length and offset values. Thisis used in afew
special teststhat run only for specific code unit widths and link sizes, and is also useful for one-off
tests.

The info modifier requests information about the compiled pattern (whether it is anchored, has a fixed
first character, and so on). The information is obtained from the pcre2_pattern_info() function. Here are
some typical examples:

re> /(7)("a"b)/m,info
Capture group count =1
Compile options: multiline
Overall options: caseless multiline
First code unit at start or follows newline
Subject length lower bound = 1

re> /(?)abc/info
Capture group count =0
Compile options. <none>
Overall options:. caseless
First code unit =’a (caseless)
Last codeunit ='¢’ (caseless)
Subject length lower bound = 3

"Compile options" are those specified by modifiers; "overall options' have added options that are taken
or deduced from the pattern. If both sets of options are the same, just asingle "options" lineis output; if
there are no options, the line is omitted. "First code unit" is where any match must start; if thereis more
than one they are listed as "starting code units'. "Last code unit" isthe last literal code unit that must be
present in any match. Thisis not necessarily the last character. These lines are omitted if no starting or
ending code units are recorded. The subject length line is omitted when no_start_optimizeis set
because the minimum length is not calculated when it can never be used.

The framesize modifier shows the size, in bytes, of the storage frames used by pcre2_match() for

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

handling backtracking. The size depends on the number of capturing parentheses in the pattern.

The callout_info modifier requests information about all the calloutsin the pattern. A list of themis
output at the end of any other information that is requested. For each callout, either its number or string
is given, followed by the item that followsit in the pattern.

Passing a NUL L context
Normally, pcre2test passes a context block to pcre2_compile(). If the null_context modifier is set,
however, NULL is passed. Thisisfor testing that pcre2_compile() behaves correctly in this case (it
uses default values).

Specifying pattern charactersin hexadecimal
The hex modifier specifiesthat the characters of the pattern, except for substrings enclosed in single or
double quotes, are to be interpreted as pairs of hexadecimal digits. Thisfeature is provided as away of
creating patterns that contain binary zeros and other non-printing characters. White space is permitted
between pairs of digits. For example, this pattern contains three characters:

/ab 32 59/hex

Parts of such a pattern are taken literally if quoted. This pattern contains nine characters, only two of
which are specified in hexadecimal:

/ab "literal" 32/hex

Either single or double quotes may be used. There is no way of including the delimiter within a
substring. The hex and expand modifiers are mutually exclusive.

Specifying the pattern’slength
By default, patterns are passed to the compiling functions as zero-terminated strings but can be passed
by length instead of being zero-terminated. The use_length modifier causes this to happen. Using a
length happens automatically (whether or not use_length is set) when hex is set, because patterns
specified in hexadecima may contain binary zeros.

If hex or use_length is used with the POSIX wrapper API (see "Using the POSIX wrapper API"
below), the REG_PEND extension is used to pass the pattern’s length.

Specifying wide charactersin 16-bit and 32-bit modes
In 16-bit and 32-bit modes, all input is automatically treated as UTF-8 and trandated to UTF-16 or
UTF-32 when the utf modifier is set. For testing the 16-bit and 32-bit libraries in non-UTF mode, the
utf8_input modifier can be used. It is mutually exclusive with utf. Input lines are interpreted as UTF-8

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

as ameans of specifying wide characters. More details are given in "Input encoding” above.

Generating long repetitive patterns
Some tests use long patterns that are very repetitive. Instead of creating avery long input line for such
apattern, you can use a special repetition feature, similar to the one described for subject lines above. If
the expand modifier is present on a pattern, parts of the pattern that have the form

\[<characters>]{ <count>}

are expanded before the pattern is passed to pcre2_compile(). For example, \[AB]{ 6000} is expanded
to "ABAB..." 6000 times. This construction cannot be nested. An initial "\[" sequence is recognized
only if "]{" followed by decimal digitsand "}" isfound later in the pattern. If not, the characters remain
in the pattern unaltered. The expand and hex modifiers are mutually exclusive.

If part of an expanded pattern looks like an expansion, but isreally part of the actual pattern, unwanted
expansion can be avoided by giving two valuesin the quantifier. For example, \[AB]{6000,6000} is
not recognized as an expansion item.

If the info modifier is set on an expanded pattern, the result of the expansion isincluded in the
information that is output.

JIT compilation
Just-in-time (JIT) compiling is a heavyweight optimization that can greatly speed up pattern matching.
See the pere2jit documentation for details. JT compiling happens, optionally, after a pattern has been
successfully compiled into an internal form. The J'T compiler converts this to optimized machine code.
It needs to know whether the match-time options PCRE2_PARTIAL_HARD and
PCRE2 PARTIAL_SOFT are going to be used, because different code is generated for the different
cases. See the partial modifier in " Subject Modifiers' below for details of how these options are
specified for each match attempt.

JIT compilation is requested by thejit pattern modifier, which may optionally be followed by an equals
sign and a number in the range 0 to 7. The three bits that make up the number specify which of the
three JIT operating modes are to be compiled:

1 compile JIT code for non-partial matching

2 compile JIT code for soft partial matching

4 compile JIT code for hard partial matching

The possible values for the jit modifier are therefore:

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

0 disableJIT

1 normal matching only

2 soft partial matching only

3 normal and soft partial matching
4 hard partial matching only

6 soft and hard partial matching only
7 al three modes

If no number is given, 7 isassumed. The phrase "partial matching" meansacall to pcre2_match() with
either the PCRE2 PARTIAL_SOFT or the PCRE2 PARTIAL_HARD option set. Note that such a call
may return a complete match; the options enable the possibility of a partial match, but do not requireit.
Note also that if you request JIT compilation only for partial matching (for example, jit=2) but do not
set the partial modifier on a subject line, that match will not use J'T code because none was compiled
for non-partial matching.

If IT compilation is successful, the compiled JT code will automatically be used when an appropriate
type of match is run, except when incompatible run-time options are specified. For more details, see the
pcre2jit documentation. See also the jitstack modifier below for away of setting the size of the JIT
stack.

If the jitfast modifier is specified, matching is done using the JI T "fast path”" interface,
pcre2_jit_match(), which skips some of the sanity checks that are done by pcre2_match(), and of
course does not work when JIT is not supported. If jitfast is specified without jit, jit=7 is assumed.

If thejitverify modifier is specified, information about the compiled pattern shows whether J T
compilation was or was not successful. If jitverify is specified without jit, jit=7 isassumed. If JT
compilation is successful when jitverify isset, thetext "(JIT)" isadded to the first output line after a
match or non match when JIT-compiled code was actually used in the match.

Setting alocale
The locale modifier must specify the name of alocale, for example:

/pattern/locale=fr_FR

Thegiven localeis set, pcre2_maketables() is called to build a set of character tables for the locale, and
thisis then passed to pcre2_compile() when compiling the regular expression. The same tables are used
when matching the following subject lines. The locale modifier applies only to the pattern on which it
appears, but can be given in a#pattern command if a default is needed. Setting alocale and alternate
character tables are mutually exclusive.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

Showing pattern memory
The memory modifier causes the size in bytes of the memory used to hold the compiled pattern to be
output. This does not include the size of the pcre2_code block; it is just the actual compiled data. If the

pattern is subsequently passed to the JIT compiler, the size of the JI' T compiled code is also output.
Hereisan example:

re> /a(b)c/jit,memory
Memory alocation (code space): 21
Memory alocation (JT code): 1910

Limiting nested parentheses
The parens_nest_limit modifier sets alimit on the depth of nested parentheses in a pattern. Breaching
the limit causes a compilation error. The default for the library is set when PCRE2 is built, but
pcre2test setsits own default of 220, which is required for running the standard test suite.

Limiting the pattern length
The max_pattern_length modifier sets alimit, in code units, to the length of pattern that

pcre2_compile() will accept. Breaching the limit causes a compilation error. The default is the largest
number a PCRE2_SIZE variable can hold (essentially unlimited).

Using the POSIX wrapper API
The posix and posix_nosub modifiers cause pcre2test to call PCRE2 via the POSIX wrapper API rather
than its native API. When posix_nosub is used, the POSIX option REG_NOSUB is passed to
regcomp(). The POSIX wrapper supports only the 8-bit library. Note that it does not imply POSIX

matching semantics; for more detail see the pcre2posix documentation. The following pattern modifiers
set options for the regcomp() function:

caseless REG_ICASE
multiline REG_NEWLINE

dotall REG DOTALL)

ungreedy REG_UNGREEDY) These options are not part of
ucp REG_UCP) the POSIX standard

utf REG UTF8)

Theregerror_buffsize modifier specifies asize for the error buffer that is passed to regerror() in the
event of acompilation error. For example:

fabc/posix,regerror_buffsize=20

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

This provides a means of testing the behaviour of regerror () when the buffer istoo small for the error
message. If thismodifier has not been set, alarge buffer is used.

The aftertext and allaftertext subject modifiers work as described below. All other modifiers are either
ignored, with awarning message, or cause an error.

The pattern is passed to regcomp() as a zero-terminated string by default, but if the use_length or hex
modifiers are set, the REG_PEND extension is used to passit by length.

Testing the stack guard feature
The stackguard modifier is used to test the use of pcre2_set_compile recursion_guard(), afunction that
is provided to enable stack availability to be checked during compilation (see the pcr e2api
documentation for details). If the number specified by the modifier is greater than zero,
pcre2_set_compile recursion_guard() iscalled to set up callback from pcre2_compile() to alocal
function. The argument it receivesis the current nesting parenthesis depth; if thisis greater than the
value given by the modifier, non-zero is returned, causing the compilation to be aborted.

Using alter native character tables
The value specified for the tables modifier must be one of the digits 0, 1, 2, or 3. It causes a specific set
of built-in character tables to be passed to pcre2_compile(). Thisis used in the PCREZ tests to check
behaviour with different character tables. The digit specifies the tables as follows:

0 do not pass any special character tables

1 thedefault ASCII tables, asdistributed in
pcre2_chartables.c.dist

2 aset of tables defining 1SO 8859 characters

3 aset of tablesloaded by the # oadtables command

In tables 2, some characters whose codes are greater than 128 are identified as letters, digits, spaces,
etc. Tables 3 can be used only after a#l oadtables command has loaded them from abinary file. Setting
aternate character tables and alocale are mutually exclusive.

Setting certain match controls
The following modifiers are really subject modifiers, and are described under " Subject Modifiers'
below. However, they may be included in a pattern’s modifier list, in which case they are applied to
every subject line that is processed with that pattern. These modifiers do not affect the compilation

process.
aftertext show text after match
alaftertext show text after captures

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

alcaptures show all captures
allvector show the entire ovector
allusedtext show all consulted text
altglobal alternative global matching
/g global globa matching
jitstack=<n> set size of JIT stack
mark show mark values
replace=<string> specify areplacement string
startchar show starting character when relevant
substitute _callout use substitution callouts

substitute_extended use PCRE2_SUBSTITUTE_EXTENDED

substitute literal use PCRE2_SUBSTITUTE_LITERAL

substitute_matched use PCRE2_SUBSTITUTE_MATCHED
substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH
substitute_replacement_only use PCRE2_SUBSTITUTE_REPLACEMENT_ONLY
substitute_skip=<n> skip substitution <n>

substitute_stop=<n> skip substitution <n> and following
substitute_unknown_unset use PCRE2 SUBSTITUTE_UNKNOWN_UNSET
substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET _EMPTY

These modifiers may not appear in a#pattern command. If you want them as defaults, set themin a
#subject command.

Specifying literal subject lines
If the subject_literal modifier is present on a pattern, al the subject lines that it matches are taken as
literal strings, with no interpretation of backslashes. It is not possible to set subject modifiers on such
lines, but any that are set as defaults by a#subject command are recognized.

Saving a compiled pattern
When a pattern with the push modifier is successfully compiled, it is pushed onto a stack of compiled
patterns, and pcre2test expects the next line to contain a new pattern (or acommand) instead of a
subject line. Thisfacility is used when saving compiled patterns to afile, as described in the section
entitled "Saving and restoring compiled patterns’ below. If pushcopy is used instead of push, a copy of
the compiled pattern is stacked, leaving the original as current, ready to match the following input
lines. This provides away of testing the pcre2_code _copy() function. The push and pushcopy
modifiers are incompatible with compilation modifiers such as global that act at match time. Any that
are specified are ignored (for the stacked copy), with awarning message, except for replace, which
causes an error. Note that jitverify, which is allowed, does not carry through to any subsequent
matching that uses a stacked pattern.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

Testing foreign pattern conversion
The experimental foreign pattern conversion functions in PCRE2 can be tested by setting the convert
modifier. Its argument is a colon-separated list of options, which set the equivalent option for the
pcre2_pattern_convert() function:

glob PCRE2_CONVERT_GLOB
glob_no_starstar PCRE2_CONVERT_GLOB_NO_STARSTAR
glob_no_wild_separator PCRE2_ CONVERT_GLOB_NO _WILD_SEPARATOR

posix_basic PCRE2_CONVERT_POSIX_BASIC
posix_extended PCRE2_CONVERT_POSIX_EXTENDED
unset Unset all options

The "unset" value is useful for turning off a default that has been set by a#pattern command. When one
of these optionsis set, the input pattern is passed to pcre2_pattern_convert(). If the conversionis
successful, the result is reflected in the output and then passed to pcre2_compile(). The normal utf and
no_utf_check options, if set, cause the PCRE2_CONVERT_UTF and

PCRE2_CONVERT_NO _UTF_CHECK options to be passed to pcre2_pattern_convert().

By default, the conversion function is allowed to allocate a buffer for its output. However, if the
convert_length modifier is set to a value greater than zero, pcre2test passes a buffer of the given length.
This makes it possible to test the length check.

The convert_glob_escape and convert_glob_separator modifiers can be used to specify the escape and
separator characters for glob processing, overriding the defaults, which are operating-system
dependent.

SUBJECT MODIFIERS
The modifiers that can appear in subject lines and the #subject command are of two types.

Setting match options
The following modifiers set options for pcre2_match() or pcre2_dfa _match(). See pcreapi for a
description of their effects.

anchored set PCRE2_ ANCHORED
endanchored set PCRE2_ENDANCHORED
dfa_restart set PCRE2 DFA_RESTART
dfa_shortest set PCRE2_DFA_SHORTEST
no_jit set PCRE2 NO_JIT

no_utf check set PCRE2 NO _UTF _CHECK
notbol set PCRE2_NOTBOL

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(2) FreeBSD General Commands Manual PCRE2TEST(1)

notempty set PCRE2 NOTEMPTY
notempty _atstart set PCRE2_ NOTEMPTY_ATSTART
noteol set PCRE2_NOTEOL

partial_hard (or ph) set PCRE2 PARTIAL_HARD
partial_soft (or ps) set PCRE2_PARTIAL_SOFT

The partial matching modifiers are provided with abbreviations because they appear frequently in tests.

If the posix or posix_nosub modifier was present on the pattern, causing the POSIX wrapper APl to be
used, the only option-setting modifiers that have any effect are notbol, notempty, and noteol, causing
REG_NOTBOL, REG_ NOTEMPTY, and REG_NOTEOL, respectively, to be passed to regexec(). The
other modifiers are ignored, with a warning message.

Thereis one additional modifier that can be used with the POSIX wrapper. It isignored (with a
warning) if used for non-POSIX matching.

posix_startend=<n>[:<m>]

This causes the subject string to be passed to regexec() using the REG_STARTEND option, which uses
offsets to specify which part of the string is searched. If only one number is given, the end offset is
passed as the end of the subject string. For more detail of REG_STARTEND, see the pcre2posix
documentation. If the subject string contains binary zeros (coded as escapes such as \x{ 00} because
pcre2test does not support actual binary zerosin itsinput), you must use posix_startend to specify its
length.

Setting match controls
The following modifiers affect the matching process or request additional information. Some of them
may also be specified on a pattern line (see above), in which case they apply to every subject line that
is matched against that pattern, but can be overridden by modifiers on the subject.

aftertext show text after match

alaftertext show text after captures

allcaptures show all captures

allvector show the entire ovector

allusedtext show all consulted text (non-JIT only)
atglobal alternative global matching
callout_capture show captures at callout time
callout_data=<n> set avalue to pass via callouts
callout_error=<n>[:<m>] control callout error
callout_extra show extra callout information

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST (1)

callout_fail=<n>[:<m>] control callout failure

callout_no_where do not show position of a callout
callout_none do not supply a callout function
copy=<number or name> copy captured substring
depth_limit=<n> set adepth limit

dfa use pcre2_dfa_match()

find_limits find heap, match and depth limits

find_limits_noheap find match and depth limits
get=<number or name> extract captured substring

getall extract all captured substrings

/g global global matching
heap limit=<n> set alimit on heap memory (Kbytes)
jitstack=<n> set size of JIT stack
mark show mark values
match_limit=<n> set amatch limit
memory show heap memory usage
null_context match with aNULL context
null_replacement substitute with NULL replacement
null_subject match with NULL subject
offset=<n> set starting offset
offset_limit=<n> set offset limit
ovector=<n> set size of output vector
recursion_limit=<n> obsolete synonym for depth_limit
replace=<string> specify areplacement string
startchar show startchar when relevant
startoffset=<n> same as offset=<n>
substitute _callout use substitution callouts

substitute_extedded use PCRE2_SUBSTITUTE_EXTENDED

substitute_literal use PCRE2_SUBSTITUTE_LITERAL

substitute_matched use PCRE2_SUBSTITUTE_MATCHED
substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH
substitute_replacement_only use PCRE2_SUBSTITUTE_REPLACEMENT_ONLY
substitute_skip=<n> skip substitution number n

substitute_stop=<n> skip substitution number n and greater
substitute_unknown_unset use PCRE2 SUBSTITUTE _UNKNOWN_UNSET
substitute_unset_empty use PCRE2 SUBSTITUTE UNSET EMPTY
zero_terminate pass the subject as zero-terminated

The effects of these modifiers are described in the following sections. When matching via the POSIX
wrapper AP, the aftertext, allaftertext, and ovector subject modifiers work as described below. All

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(2) FreeBSD General Commands Manual PCRE2TEST(1)

other modifiers are either ignored, with a warning message, or cause an error.

Showing more text
The aftertext modifier requests that as well as outputting the part of the subject string that matched the
entire pattern, pcre2test should in addition output the remainder of the subject string. Thisis useful for
tests where the subject contains multiple copies of the same substring. The allaftertext modifier
reguests the same action for captured substrings as well as the main matched substring. In each case the
remainder is output on the following line with a plus character following the capture number.

The allusedtext modifier requests that all the text that was consulted during a successful pattern match
by the interpreter should be shown, for both full and partial matches. This feature is not supported for
JIT matching, and if requested with JIT it isignored (with awarning message). Setting this modifier
affects the output if there is alookbehind at the start of a match, or, for a complete match, alookahead
at theend, or if \K isused in the pattern. Characters that precede or follow the start and end of the
actual match are indicated in the output by "<’ or '>’ characters underneath them. Hereisan example:

re> /(?<=pgr)abc(?=xyz)/
data> 123pgrabexyz456\=all usedtext
0: pgrabcxyz
<< >>>
data> 123pgrabexy\=ph,allusedtext
Partial match: pgrabcxy
<<<

The first, complete match shows that the matched string is "abc", with the preceding and following
strings "pgr" and "xyz" having been consulted during the match (when processing the assertions). The
partial match can indicate only the preceding string.

The startchar modifier requests that the starting character for the match be indicated, if it is different to
the start of the matched string. The only time when this occursis when \K has been processed as part of
the match. In this situation, the output for the matched string is displayed from the starting character
instead of from the match point, with circumflex characters under the earlier characters. For example:

re> /[abc\Kxyz/
data> abcxyz\=startchar
0: abcxyz

NN\N

Unlike allusedtext, the startchar modifier can be used with J T. However, these two modifiers are
mutually exclusive.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

Showing the value of all capture groups
The allcaptures modifier requests that the values of all potential captured parentheses be output after a
match. By default, only those up to the highest one actually used in the match are output
(corresponding to the return code from pcre2_match()). Groups that did not take part in the match are
output as "<unset>". This modifier is not relevant for DFA matching (which does no capturing) and
does not apply when replaceis specified; it isignored, with awarning message, if present.

Showing the entire ovector, for all outcomes
The allvector modifier requests that the entire ovector be shown, whatever the outcome of the match.
Compare allcaptur es, which shows only up to the maximum number of capture groups for the pattern,
and then only for a successful complete non-DFA match. This modifier, which acts after any match
result, and also for DFA matching, provides ameans of checking that there are no unexpected
modifications to ovector fields. Before each match attempt, the ovector isfilled with a special value,
and if thisis found in both elements of a capturing pair, "<unchanged>" is output. After a successful
match, this applies to all groups after the maximum capture group for the pattern. In other cases it
appliesto the entire ovector. After apartial match, the first two elements are the only ones that should
be set. After a DFA match, the amount of ovector that is used depends on the number of matches that
were found.

Testing pattern callouts
A callout function is supplied when pcr e2test callsthe library matching functions, unless callout_none
is specified. Its behaviour can be controlled by various modifiers listed above whose names begin with
callout_. Details are given in the section entitled "Callouts' below. Testing callouts from
pcre2_substitute() is described separately in " Testing the substitution function” below.

Finding all matchesin astring
Searching for all possible matches within a subject can be requested by the global or altglobal modifier.
After finding a match, the matching function is called again to search the remainder of the subject. The
difference between global and altglobal isthat the former uses the start_offset argument to
pcre2_match() or pcre2_dfa_match() to start searching at a new point within the entire string (whichis
what Perl does), whereas the latter passes over a shortened subject. This makes a difference to the
matching processif the pattern begins with alookbehind assertion (including \b or \B).

If an empty string is matched, the next match is done with the PCRE2_ NOTEMPTY _ATSTART and
PCRE2_ANCHORED flags set, in order to search for another, non-empty, match at the same point in
the subject. If this match fails, the start offset is advanced, and the normal match isretried. This
imitates the way Perl handles such cases when using the /g modifier or the split() function. Normally,
the start offset is advanced by one character, but if the newline convention recognizes CRLF asa
newline, and the current character is CR followed by LF, an advance of two characters occurs.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

Testing substring extraction functions
The copy and get modifiers can be used to test the pcre2_substring_copy_xxx() and
pcre2_substring_get xxx() functions. They can be given more than once, and each can specify a
capture group name or number, for example:

abcd\=copy=1,copy=3,get=G1

If the #subject command is used to set default copy and/or get lists, these can be unset by specifying a
negative number to cancel all numbered groups and an empty name to cancel al named groups.

The getall modifier tests pcre2_substring_list_get(), which extracts all captured substrings.

If the subject lineis successfully matched, the substrings extracted by the convenience functions are
output with C, G, or L after the string number instead of a colon. Thisisin addition to the normal full
list. The string length (that is, the return from the extraction function) is given in parentheses after each
substring, followed by the name when the extraction was by name.

Testing the substitution function
If the replace modifier is set, the pcre2_substitute() function is called instead of one of the matching
functions (or after one call of pcre2_match() in the case of PCRE2 SUBSTITUTE_MATCHED). Note
that replacement strings cannot contain commas, because a comma signifies the end of amodifier. This
is not thought to be anissue in atest program.

Specifying a completely empty replacement string disables this modifier. However, it is possible to
specify an empty replacement by providing a buffer length, as described below, for an otherwise empty
replacement.

Unlike subject strings, pcre2test does not process replacement strings for escape sequences. In UTF
mode, a replacement string is checked to seeif itisavalid UTF-8 string. If so, it is correctly converted
to aUTF string of the appropriate code unit width. If it isnot avalid UTF-8 string, the individual code
units are copied directly. This provides a means of passing an invalid UTF-8 string for testing
pUrposes.

The following modifiers set options (in additional to the normal match options) for pcre2_substitute():

global PCRE2_SUBSTITUTE_GLOBAL

substitute_extended PCRE2_SUBSTITUTE_EXTENDED
substitute_literal PCRE2_SUBSTITUTE_LITERAL

substitute_matched PCRE2 SUBSTITUTE MATCHED
substitute_overflow_length PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

substitute_replacement_only PCRE2 SUBSTITUTE REPLACEMENT_ONLY
substitute_unknown_unset PCRE2 SUBSTITUTE UNKNOWN_UNSET
substitute_unset_empty PCRE2_SUBSTITUTE_UNSET_EMPTY

See the pcre2api documentation for details of these options.

After a successful substitution, the modified string is output, preceded by the number of replacements.
This may be zero if there were no matches. Here is a simple example of a substitution test:

/abc/replace=xxx
=abc=abc=

1: =xxx=abc=
=abc=abc=\=global

27 EXXX=XXX=

Subject and replacement strings should be kept relatively short (fewer than 256 characters) for
substitution tests, as fixed-size buffers are used. To make it easy to test for buffer overflow, if the
replacement string starts with a number in square brackets, that number is passed to pcre2_substitute()
as the size of the output buffer, with the replacement string starting at the next character. Hereisan
example that tests the edge case:

/abc/
123abc123\=replace=[10] XY Z

1: 123XY Z123
123abc123\=replace=[9] XY Z

Failed: error -47: no more memory

The default action of pcre2_substitute() isto return PCRE2_ ERROR_NOMEMORY when the output
buffer istoo small. However, if the PCRE2_SUBSTITUTE_OVERFLOW_LENGTH option is set (by
using the substitute_overflow_length modifier), pcre2_substitute() continues to go through the motions
of matching and substituting (but not doing any callouts), in order to compute the size of buffer that is
required. When this happens, pcr e2test shows the required buffer length (which includes space for the
trailing zero) as part of the error message. For example:

fabc/substitute_overflow_length
123abc123\=replace=[9 XY Z

Failed: error -47. no more memory: 10 code units are needed

A replacement string isignored with POSIX and DFA matching. Specifying partial matching provokes
an error return ("bad option value") from pcre2_substitute().

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

Testing substitute callouts
If the substitute callout modifier is set, a substitution callout function is set up. The null_context
modifier must not be set, because the address of the callout function is passed in a match context.
When the callout function is called (after each substitution), details of the the input and output strings
are output. For example:

/abc/g,replace=<$0>,substitute_callout
abcdefabepgr

1(1) Old 0 3"abc" New 0 5 "<abc>"

2(1) Old 6 9 "abc" New 8 13 "<abc>"

2: <abc>def<abe>par

The first number on each callout line is the count of matches. The parenthesized number is the number
of pairsthat are set in the ovector (that is, one more than the number of capturing groups that were set).
Then are listed the offsets of the old substring, its contents, and the same for the replacement.

By default, the substitution callout function returns zero, which accepts the replacement and causes
matching to continue if /g was used. Two further modifiers can be used to test other return values. If
substitute skip is set to a value greater than zero the callout function returns +1 for the match of that
number, and similarly substitute stop returns -1. These cause the replacement to be rejected, and -1
causes no further matching to take place. If either of them are set, substitute_callout is assumed. For
example:

/abc/g,replace=<$0>,substitute_skip=1
abcdefabepgr

1(1) Old 0 3"abc" New 0 5 "<abc> SKIPPED"

2(1) Old 6 9 "abc" New 6 11 "<abc>"

2: abcdef<abc>par
abcdefabepgr\=substitute_stop=1

1(1) Old 0 3"abc" New 0 5 "<abc> STOPPED"

1: abcdefabepgr

If both are set for the same number, stop takes precedence. Only a single skip or stop is supported,
which is sufficient for testing that the feature works.

Setting the JIT stack size
Thejitstack modifier provides away of setting the maximum stack size that is used by the just-in-time
optimization code. It isignored if JT optimization is not being used. The value is a number of
kibibytes (units of 1024 bytes). Setting zero reverts to the default of 32KiB. Providing a stack that is
larger than the default is necessary only for very complicated patterns. If jitstack is set non-zero on a

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

subject line it overrides any value that was set on the pattern.

Setting heap, match, and depth limits
The heap_limit, match_limit, and depth_limit modifiers set the appropriate limitsin the match context.
These values are ignored when the find_limits or find_limits_noheap modifier is specified.

Finding minimum limits
If the find_limits modifier is present on a subject line, pcre2test calls the relevant matching function
several times, setting different values in the match context viapcre2_set_heap_limit(),
pcre2 set_match_limit(), or pcre2_set_depth_limit() until it finds the smallest value for each parameter
that allows the match to complete without a"limit exceeded" error. The match itself may succeed or
fail. An alternative modifier, find_limits _noheap, omits the heap limit. Thisis used in the standard
tests, because the minimum heap limit varies between systems. If JT is being used, only the match
limit is relevant, and the other two are automatically omitted.

When using this modifier, the pattern should not contain any limit settings such as
(*LIMIT_MATCH=...) within it. If such asetting is present and is lower than the minimum matching
value, the minimum value cannot be found because pcre2_set_match_limit() etc. are only ableto
reduce the value of an in-pattern limit; they cannot increase it.

For non-DFA matching, the minimum depth_limit number is a measure of how much nested
backtracking happens (that is, how deeply the pattern’ s tree is searched). In the case of DFA matching,
depth_limit controls the depth of recursive calls of the internal function that is used for handling pattern
recursion, lookaround assertions, and atomic groups.

For non-DFA matching, the match_limit number is a measure of the amount of backtracking that takes
place, and learning the minimum value can be instructive. For most simple matches, the number is
guite small, but for patterns with very large numbers of matching possihilities, it can become large very
quickly with increasing length of subject string. In the case of DFA matching, match_limit controls the
total number of calls, both recursive and non-recursive, to the internal matching function, thus
contralling the overall amount of computing resource that is used.

For both kinds of matching, the heap_limit number, which isin kibibytes (units of 1024 bytes), limits
the amount of heap memory used for matching.

Showing MARK names
The mark modifier causes the names from backtracking control verbs that are returned from callsto
pcre2_match() to be displayed. If amark isreturned for a match, non-match, or partial match, pcre2test
showsit. For amatch, itison aline by itself, tagged with "MK:". Otherwise, it is added to the non-
match message.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(2) FreeBSD General Commands Manual PCRE2TEST(1)

Showing memory usage
The memory modifier causes pcre2test to log the sizes of all heap memory allocation and freeing calls
that occur during acall to pcre2_match() or pcre2_dfa _match(). In the latter case, heap memory is used
only when a match requires more internal workspace that the default alocation on the stack, so in
many cases there will be no output. No heap memory is allocated during matching with JIT. For this
modifier to work, the null_context modifier must not be set on both the pattern and the subject, though
it can be set on one or the other.

Setting a starting offset
The offset modifier sets an offset in the subject string at which matching starts. Its value is a number of
code units, not characters.

Setting an offset limit
The offset_limit modifier sets alimit for unanchored matches. If a match cannot be found starting at or
before this offset in the subject, a"no match” return is given. The data value is a number of code units,
not characters. When this modifier is used, the use_offset_limit modifier must have been set for the
pattern; if not, an error is generated.

Setting the size of the output vector
The ovector modifier applies only to the subject line in which it appears, though of course it can also be
used to set a default in a#subject command. It specifies the number of pairs of offsets that are available
for storing matching information. The default is 15.

A value of zero is useful when testing the POSIX API because it causes regexec() to be called with a
NULL capture vector. When not testing the POSIX API, avalue of zero is used to cause

pcre2 _match_data create from_pattern() to be called, in order to create a match block of exactly the
right size for the pattern. (It is not possible to create a match block with a zero-length ovector; thereis
always at least one pair of offsets.)

Passing the subject as zer o-ter minated
By default, the subject string is passed to a native API matching function with its correct length. In
order to test the facility for passing a zero-terminated string, the zer o_ter minate modifier is provided. It
causes the length to be passed as PCRE2_ZERO_TERMINATED. When matching via the POSI X
interface, this modifier isignored, with awarning.

When testing pcre2_substitute(), this modifier also has the effect of passing the replacement string as
zero-terminated.

Passing a NUL L context, subject, or replacement
Normally, pcre2test passes a context block to pcre2_match(), pcre2_dfa_match(), pcre2_jit_match() or

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

pcre2 substitute(). If the null_context modifier is set, however, NULL is passed. Thisisfor testing
that the matching and substitution functions behave correctly in this case (they use default values). This
modifier cannot be used with the find_limits, find_limits_noheap, or substitute callout modifiers.

Similarly, for testing purposes, if the null_subject or null_replacement modifier is set, the subject or
replacement string pointers are passed as NUL L, respectively, to the relevant functions.

THE ALTERNATIVE MATCHING FUNCTION
By default, pcre2test uses the standard PCRE2 matching function, pcre2_match() to match each subject
line. PCRE2 also supports an alternative matching function, pcre2_dfa_match(), which operatesin a
different way, and has some restrictions. The differences between the two functions are described in the
pcre2matching documentation.

If the dfa modifier is set, the alternative matching function is used. This function finds al possible
matches at a given point in the subject. If, however, the dfa_shortest modifier is set, processing stops
after the first match isfound. Thisis aways the shortest possible match.

DEFAULT OUTPUT FROM pcre2test
This section describes the output when the normal matching function, pcre2_match(), is being used.

When a match succeeds, pcre2test outputs the list of captured substrings, starting with number O for the
string that matched the whole pattern. Otherwise, it outputs "No match" when the returnis
PCRE2_ERROR_NOMATCH, or "Partial match:" followed by the partially matching substring when
thereturn is PCRE2_ERROR_PARTIAL. (Note that thisis the entire substring that was inspected
during the partial match; it may include characters before the actual match start if alookbehind
assertion, \K, \b, or \B was involved.)

For any other return, pcre2test outputs the PCRE2 negative error number and a short descriptive
phrase. If the error isafailed UTF string check, the code unit offset of the start of the failing character
is aso output. Here is an example of an interactive pcre2test run.

$ pcre2test
PCRE2 version 10.22 2016-07-29

re> [Nabc(\d+)/
data> abc123

0: abc123
1:123
data> xyz
No match

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

Unset capturing substrings that are not followed by one that is set are not shown by pcre2test unless the
allcaptures modifier is specified. In the following example, there are two capturing substrings, but
when the first data line is matched, the second, unset substring is not shown. An "internal™ unset
substring is shown as "<unset>", as for the second dataline.

re> /(a)|(b)/

data> a

0:a

1:a

data> b

0:b

1: <unset>
2:b

If the strings contain any non-printing characters, they are output as \xhh escapesiif the valueisless
than 256 and UTF modeis not set. Otherwise they are output as\x{ hh...} escapes. See below for the
definition of non-printing characters. If the aftertext modifier is set, the output for substring O is
followed by the the rest of the subject string, identified by "0+" like this;

re> /cat/aftertext
data> cataract

0: cat

O+ aract

If global matching is requested, the results of successive matching attempts are output in sequence, like
this:

re> \Bi(\w\w)/g
data> Mississippi
0:iss
1'ss
0:iss
1'ss
O:ipp
1:pp

"No match" isoutput only if the first match attempt fails. Here is an example of afailure message (the
offset 4 that is specified by the offset modifier is past the end of the subject string):

re> /xyz/

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

data> xyz\=offset=4
Error -24 (bad offset value)

Note that whereas patterns can be continued over several lines (aplain ">" prompt is used for
continuations), subject lines may not. However newlines can be included in a subject by means of the
\n escape (or \r, \n\n, etc., depending on the newline sequence setting).

OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
When the alternative matching function, pcre2_dfa _match(), is used, the output consists of alist of all
the matches that start at the first point in the subject where there is at |east one match. For example:

re> /(tang|tangerineltan)/
data> yellow tangerine\=dfa
0: tangerine

1: tang

2:tan

Using the normal matching function on this data finds only "tang". The longest matching string is
always given first (and numbered zero). After aPCRE2 ERROR_PARTIAL return, the output is
"Partial match:", followed by the partially matching substring. Note that this is the entire substring that
was inspected during the partial match; it may include characters before the actual match start if a
lookbehind assertion, \b, or \B wasinvolved. (\K is not supported for DFA matching.)

If global matching is requested, the search for further matches resumes at the end of the longest match.
For example:

re> /(tang|tangerineltan)/g
data> yellow tangerine and tangy sultana\=dfa
0: tangerine
1: tang
2: tan
0: tang
1 tan
0: tan

The alternative matching function does not support substring capture, so the modifiers that are
concerned with captured substrings are not relevant.

RESTARTING AFTER A PARTIAL MATCH
When the alternative matching function has given the PCRE2_ERROR_PARTIAL return, indicating

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

that the subject partially matched the pattern, you can restart the match with additional subject data by
means of the dfa_restart modifier. For example:

re> /MdAd(jan|feb|mar|apr|may|j unljul jaug|sep|oct|nov|dec)\d\d$/
data> 23ja\=ps,dfa
Partial match: 23ja
data> n05\=dfa,dfa_restart
0: n05

For further information about partial matching, see the pcre2partial documentation.

CALLOUTS
If the pattern contains any callout requests, pcre2test’s callout function is called during matching unless
callout_noneis specified. Thisworks with both matching functions, and with JIT, though there are
some differences in behaviour. The output for callouts with numerical arguments and those with string
argumentsis dlightly different.

Calloutswith numerical arguments
By default, the callout function displays the callout number, the start and current positionsin the
subject text at the callout time, and the next pattern item to be tested. For example:

--->pgrabcdef
0o "N \d

This output indicates that callout number O occurred for a match attempt starting at the fourth character
of the subject string, when the pointer was at the seventh character, and when the next pattern item was
\d. Just one circumflex is output if the start and current positions are the same, or if the current position
precedes the start position, which can happen if the callout isin alookbehind assertion.

Callouts numbered 255 are assumed to be automatic callouts, inserted as a result of the auto_callout
pattern modifier. In this case, instead of showing the callout number, the offset in the pattern, preceded

by aplus, isoutput. For example:

re> Nd?A-E]*/auto_callout

data> E*
--->E*

+0/N \d?
+3% [AE]
+8 NN\ *
+107 7

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)
0: E*

If apattern contains (*MARK) items, an additional line is output whenever a change of latest mark is
passed to the callout function. For example:

re> /a(* MARK:X)bc/auto_callout
data> abc
--->abc
+0n a
+1™M (*MARK:X)
+10™M b
Latest Mark: X
+11~7 c
+12/\ N
0: abc

The mark changes between matching "a" and "b", but stays the same for the rest of the match, so
nothing more is output. If, as aresult of backtracking, the mark revertsto being unset, the text
"<unset>" is output.

Calloutswith string arguments
The output for a callout with a string argument is similar, except that instead of outputting a callout
number before the position indicators, the callout string and its offset in the pattern string are output
before the reflection of the subject string, and the subject string is reflected for each callout. For
example:

re> [~ab(?C' first’)ed(?C"second") ef/
data> abcdefg
Callout (7): "first’
--->abcdefg
NN C
Cdlout (20): "second"
--->abcdefg

VASEIVAN e

0: abcdef

Callout modifiers
The callout function in pcre2test returns zero (carry on matching) by default, but you can use a
callout_fail modifier in a subject line to change this and other parameters of the callout (see below).

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST(1)

If the callout_capture modifier is set, the current captured groups are output when a callout occurs. This
isuseful only for non-DFA matching, as pcre2_dfa_match() does not support capturing, so no captures
are ever shown.

The normal callout output, showing the callout number or pattern offset (as described above) is
suppressed if the callout_no_where modifier is set.

When using the interpretive matching function pcre2_match() without JIT, setting the callout_extra
modifier causes additional output from pcre2test’s callout function to be generated. For the first callout
in amatch attempt at a new starting position in the subject, "New match attempt” is output. If there has
been a backtrack since the last callout (or start of matching if thisisthe first callout), "Backtrack" is
output, followed by "No other matching paths' if the backtrack ended the previous match attempt. For
example:

re> /(at+)b/auto_callout,no_start_optimize,no_auto_possess
data> aac\=callout_extra
New match attempt

--->aaC
+0/ (
+1/ at
+3 NN)
+4/N b
Backtrack

___>aac
+3M)
+4"M b
Backtrack

No other matching paths
New match attempt
--->aac

+0 ™ |

+1 N at

+3 M)

+4 ™M b

Backtrack

No other matching paths
New match attempt

--->aaC
+0 N |
+1 N at

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST (1)

Backtrack

No other matching paths
New match attempt
--->aac

+0 N

+1 A at

No match

Notice that various optimizations must be turned off if you want all possible matching paths to be
scanned. If no_start_optimize is not used, there is an immediate "no match", without any callouts,
because the starting optimization failsto find "b" in the subject, which it knows must be present for any
match. If no_auto_possessis not used, the "a+" item is turned into "a++", which reduces the number of
backtracks.

The callout_extra modifier has no effect if used with the DFA matching function, or with JIT.

Return values from callouts
The default return from the callout function is zero, which allows matching to continue. The
callout_fail modifier can be given one or two numbers. If there is only one number, 1 is returned
instead of 0 (causing matching to backtrack) when a callout of that number is reached. If two numbers
(<n>:<m>) are given, 1 is returned when callout <n> is reached and there have been at least <m>
callouts. The callout_error modifier is similar, except that PCRE2_ ERROR_CALLOUT isreturned,
causing the entire matching process to be aborted. If both these modifiers are set for the same callout
number, callout_error takes precedence. Note that callouts with string arguments are always given the
number zero.

The callout_data modifier can be given an unsigned or a negative number. Thisis set asthe "user data’
that is passed to the matching function, and passed back when the callout function isinvoked. Any
value other than zero is used as areturn from pcre2test’s callout function.

Inserting callouts can be helpful when using pcre2test to check complicated regular expressions. For
further information about callouts, see the pcre2callout documentation.

NON-PRINTING CHARACTERS
When pcre2test is outputting text in the compiled version of a pattern, bytes other than 32-126 are
always treated as non-printing characters and are therefore shown as hex escapes.

When pcre2test is outputting text that is amatched part of a subject string, it behavesin the same way,

unless a different locale has been set for the pattern (using the locale modifier). In this case, the
isprint() function is used to distinguish printing and non-printing characters.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST(1) FreeBSD General Commands Manual PCRE2TEST (1)

SAVING AND RESTORING COMPILED PATTERNS
It is possible to save compiled patterns on disc or elsewhere, and reload them later, subject to a number
of restrictions. JI' T data cannot be saved. The host on which the patterns are rel oaded must be running
the same version of PCRE2, with the same code unit width, and must also have the same endianness,
pointer width and PCRE2_SIZE type. Before compiled patterns can be saved they must be serialized,
that is, converted to a stream of bytes. A single byte stream may contain any number of compiled
patterns, but they must al use the same character tables. A single copy of thetablesisincluded in the
byte stream (its size is 1088 bytes).

The functions whose names begin with pcre2_serialize are used for seriaizing and de-seriaizing.
They are described in the pcr e2serialize documentation. In this section we describe the features of
pcre2test that can be used to test these functions.

Note that "serialization” in PCRE2 does not convert compiled patterns to an abstract format like Java or
NET. It just makes areloadable byte code stream. Hence the restrictions on rel oading mentioned
above.

In pere2test, when a pattern with push modifier is successfully compiled, it is pushed onto a stack of
compiled patterns, and pcre2test expects the next line to contain a new pattern (or command) instead of
asubject line. By contrast, the pushcopy modifier causes a copy of the compiled pattern to be stacked,
leaving the original available for immediate matching. By using push and/or pushcopy, a number of
patterns can be compiled and retained. These modifiers are incompatible with posix, and control
modifiers that act at match time are ignored (with a message) for the stacked patterns. Thejitverify
modifier applies only at compiletime.

The command
#save <filename>

causes all the stacked patterns to be serialized and the result written to the named file. Afterwards, all
the stacked patterns are freed. The command

#load <filename>

reads the data in the file, and then arranges for it to be de-serialized, with the resulting compiled
patterns added to the pattern stack. The pattern on the top of the stack can be retrieved by the #pop
command, which must be followed by lines of subjects that are to be matched with the pattern,
terminated as usual by an empty line or end of file. This command may be followed by a modifier list
containing only control modifiers that act after a pattern has been compiled. In particular, hex, posix,
posix_nosub, push, and pushcopy are not alowed, nor are any option-setting modifiers. The JIT

PCRE 10.41 27 July 2022 PCRE2TEST(1)

PCRE2TEST (1) FreeBSD General Commands Manual PCRE2TEST(1)

modifiers are, however permitted. Here is an example that saves and reloads two patterns.

/abc/push
Ixyz/push
#save tempfile
#load tempfile
#pop info

Xyz

#pop jit,bincode
abc

If jitverify is used with #pop, it does not automatically imply jit, which is different behaviour from
when it is used on a pattern.

The #popcopy command is analogous to the pushcopy modifier in that it makes current a copy of the
topmost stack pattern, leaving the original still on the stack.

SEE ALSO
pcre2(3), pcre2api(3), pcre2callout(3), perezjit, pecre2matching(3), perezpartial(d), pere2pattern(3),
pcre2serialize(3).

AUTHOR
Philip Hazel
Retired from University Computing Service
Cambridge, England.

REVISION

Last updated: 27 July 2022
Copyright (c) 1997-2022 University of Cambridge.

PCRE 10.41 27 July 2022 PCRE2TEST(1)

