
NAME
PCRE - Perl-compatible regular expressions

SAVING AND RE-USING PRECOMPILED PCRE PATTERNS
If you are running an application that uses a large number of regular expression patterns, it may be

useful to store them in a precompiled form instead of having to compile them every time the

application is run. If you are not using any private character tables (see the pcre_maketables()
documentation), this is relatively straightforward. If you are using private tables, it is a little bit more

complicated. However, if you are using the just-in-time optimization feature, it is not possible to save

and reload the JIT data.

If you save compiled patterns to a file, you can copy them to a different host and run them there. If the

two hosts have different endianness (byte order), you should run the

pcre[16|32]_pattern_to_host_byte_order() function on the new host before trying to match the pattern.

The matching functions return PCRE_ERROR_BADENDIANNESS if they detect a pattern with the

wrong endianness.

Compiling regular expressions with one version of PCRE for use with a different version is not

guaranteed to work and may cause crashes, and saving and restoring a compiled pattern loses any JIT

optimization data.

SAVING A COMPILED PATTERN
The value returned by pcre[16|32]_compile() points to a single block of memory that holds the

compiled pattern and associated data. You can find the length of this block in bytes by calling

pcre[16|32]_fullinfo() with an argument of PCRE_INFO_SIZE. You can then save the data in any

appropriate manner. Here is sample code for the 8-bit library that compiles a pattern and writes it to a

file. It assumes that the variable fd refers to a file that is open for output:

int erroroffset, rc, size;

char *error;

pcre *re;

re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);

if (re == NULL) { ... handle errors ... }

rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);

if (rc < 0) { ... handle errors ... }

rc = fwrite(re, 1, size, fd);

if (rc != size) { ... handle errors ... }

In this example, the bytes that comprise the compiled pattern are copied exactly. Note that this is binary

PCREPRECOMPILE(3) FreeBSD Library Functions Manual PCREPRECOMPILE(3)

PCRE 8.34 12 November 2013 PCREPRECOMPILE(3)

data that may contain any of the 256 possible byte values. On systems that make a distinction between

binary and non-binary data, be sure that the file is opened for binary output.

If you want to write more than one pattern to a file, you will have to devise a way of separating them.

For binary data, preceding each pattern with its length is probably the most straightforward approach.

Another possibility is to write out the data in hexadecimal instead of binary, one pattern to a line.

Saving compiled patterns in a file is only one possible way of storing them for later use. They could

equally well be saved in a database, or in the memory of some daemon process that passes them via

sockets to the processes that want them.

If the pattern has been studied, it is also possible to save the normal study data in a similar way to the

compiled pattern itself. However, if the PCRE_STUDY_JIT_COMPILE was used, the just-in-time data

that is created cannot be saved because it is too dependent on the current environment. When studying

generates additional information, pcre[16|32]_study() returns a pointer to a pcre[16|32]_extra data

block. Its format is defined in the section on matching a pattern in the pcreapi documentation. The

study_data field points to the binary study data, and this is what you must save (not the

pcre[16|32]_extra block itself). The length of the study data can be obtained by calling

pcre[16|32]_fullinfo() with an argument of PCRE_INFO_STUDYSIZE. Remember to check that

pcre[16|32]_study() did return a non-NULL value before trying to save the study data.

RE-USING A PRECOMPILED PATTERN
Re-using a precompiled pattern is straightforward. Having reloaded it into main memory, called

pcre[16|32]_pattern_to_host_byte_order() if necessary, you pass its pointer to pcre[16|32]_exec() or

pcre[16|32]_dfa_exec() in the usual way.

However, if you passed a pointer to custom character tables when the pattern was compiled (the

tableptr argument of pcre[16|32]_compile()), you must now pass a similar pointer to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec(), because the value saved with the compiled pattern will obviously be

nonsense. A field in a pcre[16|32]_extra() block is used to pass this data, as described in the section on

matching a pattern in the pcreapi documentation.

Warning: The tables that pcre_exec() and pcre_dfa_exec() use must be the same as those that were used

when the pattern was compiled. If this is not the case, the behaviour is undefined.

If you did not provide custom character tables when the pattern was compiled, the pointer in the

compiled pattern is NULL, which causes the matching functions to use PCRE’s internal tables. Thus,

you do not need to take any special action at run time in this case.

If you saved study data with the compiled pattern, you need to create your own pcre[16|32]_extra data

PCREPRECOMPILE(3) FreeBSD Library Functions Manual PCREPRECOMPILE(3)

PCRE 8.34 12 November 2013 PCREPRECOMPILE(3)

block and set the study_data field to point to the reloaded study data. You must also set the

PCRE_EXTRA_STUDY_DATA bit in the flags field to indicate that study data is present. Then pass

the pcre[16|32]_extra block to the matching function in the usual way. If the pattern was studied for

just-in-time optimization, that data cannot be saved, and so is lost by a save/restore cycle.

COMPATIBILITY WITH DIFFERENT PCRE RELEASES
In general, it is safest to recompile all saved patterns when you update to a new PCRE release, though

not all updates actually require this.

AUTHOR
Philip Hazel

University Computing Service

Cambridge CB2 3QH, England.

REVISION
Last updated: 12 November 2013

Copyright (c) 1997-2013 University of Cambridge.

PCREPRECOMPILE(3) FreeBSD Library Functions Manual PCREPRECOMPILE(3)

PCRE 8.34 12 November 2013 PCREPRECOMPILE(3)

