
NAME
pcretest - a program for testing Perl-compatible regular expressions.

SYNOPSIS
pcretest [options] [input file [output file]]

pcretest was written as a test program for the PCRE regular expression library itself, but it can also be

used for experimenting with regular expressions. This document describes the features of the test

program; for details of the regular expressions themselves, see the pcrepattern documentation. For

details of the PCRE library function calls and their options, see the pcreapi , pcre16 and pcre32
documentation.

The input for pcretest is a sequence of regular expression patterns and strings to be matched, as

described below. The output shows the result of each match. Options on the command line and the

patterns control PCRE options and exactly what is output.

As PCRE has evolved, it has acquired many different features, and as a result, pcretest now has rather a

lot of obscure options for testing every possible feature. Some of these options are specifically

designed for use in conjunction with the test script and data files that are distributed as part of PCRE,

and are unlikely to be of use otherwise. They are all documented here, but without much justification.

INPUT DATA FORMAT
Input to pcretest is processed line by line, either by calling the C library’s fgets() function, or via the

libreadline library (see below). In Unix-like environments, fgets() treats any bytes other than newline

as data characters. However, in some Windows environments character 26 (hex 1A) causes an

immediate end of file, and no further data is read. For maximum portability, therefore, it is safest to use

only ASCII characters in pcretest input files.

The input is processed using using C’s string functions, so must not contain binary zeroes, even though

in Unix-like environments, fgets() treats any bytes other than newline as data characters.

PCRE’s 8-BIT, 16-BIT AND 32-BIT LIBRARIES
From release 8.30, two separate PCRE libraries can be built. The original one supports 8-bit character

strings, whereas the newer 16-bit library supports character strings encoded in 16-bit units. From

release 8.32, a third library can be built, supporting character strings encoded in 32-bit units. The

pcretest program can be used to test all three libraries. However, it is itself still an 8-bit program,

reading 8-bit input and writing 8-bit output. When testing the 16-bit or 32-bit library, the patterns and

data strings are converted to 16- or 32-bit format before being passed to the PCRE library functions.

Results are converted to 8-bit for output.

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

References to functions and structures of the form pcre[16|32]_xx below mean "pcre_xx when using

the 8-bit library, pcre16_xx when using the 16-bit library, or pcre32_xx when using the 32-bit library".

COMMAND LINE OPTIONS
-8 If the 8-bit library has been built, this option causes it to be used (this is the default). If the

8-bit library has not been built, this option causes an error.

-16 If the 16-bit library has been built, this option causes it to be used. If only the 16-bit library

has been built, this is the default. If the 16-bit library has not been built, this option causes

an error.

-32 If the 32-bit library has been built, this option causes it to be used. If only the 32-bit library

has been built, this is the default. If the 32-bit library has not been built, this option causes

an error.

-b Behave as if each pattern has the /B (show byte code) modifier; the internal form is output

after compilation.

-C Output the version number of the PCRE library, and all available information about the

optional features that are included, and then exit with zero exit code. All other options are

ignored.

-C option Output information about a specific build-time option, then exit. This functionality is

intended for use in scripts such as RunTest. The following options output the value and set

the exit code as indicated:

ebcdic-nl the code for LF (= NL) in an EBCDIC environment:

0x15 or 0x25

0 if used in an ASCII environment

exit code is always 0

linksize the configured internal link size (2, 3, or 4)

exit code is set to the link size

newline the default newline setting:

CR, LF, CRLF, ANYCRLF, or ANY

exit code is always 0

bsr the default setting for what \R matches:

ANYCRLF or ANY

exit code is always 0

The following options output 1 for true or 0 for false, and set the exit code to the same

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

value:

ebcdic compiled for an EBCDIC environment

jit just-in-time support is available

pcre16 the 16-bit library was built

pcre32 the 32-bit library was built

pcre8 the 8-bit library was built

ucp Unicode property support is available

utf UTF-8 and/or UTF-16 and/or UTF-32 support

is available

If an unknown option is given, an error message is output; the exit code is 0.

-d Behave as if each pattern has the /D (debug) modifier; the internal form and information

about the compiled pattern is output after compilation; -d is equivalent to -b -i.

-dfa Behave as if each data line contains the \D escape sequence; this causes the alternative

matching function, pcre[16|32]_dfa_exec(), to be used instead of the standard

pcre[16|32]_exec() function (more detail is given below).

-help Output a brief summary these options and then exit.

-i Behave as if each pattern has the /I modifier; information about the compiled pattern is

given after compilation.

-M Behave as if each data line contains the \M escape sequence; this causes PCRE to discover

the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings by calling

pcre[16|32]_exec() repeatedly with different limits.

-m Output the size of each compiled pattern after it has been compiled. This is equivalent to

adding /M to each regular expression. The size is given in bytes for both libraries.

-O Behave as if each pattern has the /O modifier, that is disable auto-possessification for all

patterns.

-o osize Set the number of elements in the output vector that is used when calling

pcre[16|32]_exec() or pcre[16|32]_dfa_exec() to be osize. The default value is 45, which is

enough for 14 capturing subexpressions for pcre[16|32]_exec() or 22 different matches for

pcre[16|32]_dfa_exec(). The vector size can be changed for individual matching calls by

including \O in the data line (see below).

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

-p Behave as if each pattern has the /P modifier; the POSIX wrapper API is used to call

PCRE. None of the other options has any effect when -p is set. This option can be used

only with the 8-bit library.

-q Do not output the version number of pcretest at the start of execution.

-S size On Unix-like systems, set the size of the run-time stack to size megabytes.

-s or -s+ Behave as if each pattern has the /S modifier; in other words, force each pattern to be

studied. If -s+ is used, all the JIT compile options are passed to pcre[16|32]_study(),
causing just-in-time optimization to be set up if it is available, for both full and partial

matching. Specific JIT compile options can be selected by following -s+ with a digit in the

range 1 to 7, which selects the JIT compile modes as follows:

1 normal match only

2 soft partial match only

3 normal match and soft partial match

4 hard partial match only

6 soft and hard partial match

7 all three modes (default)

If -s++ is used instead of -s+ (with or without a following digit), the text "(JIT)" is added

to the first output line after a match or no match when JIT-compiled code was actually

used.

Note that there are pattern options that can override -s, either specifying no studying at all,

or suppressing JIT compilation.

If the /I or /D option is present on a pattern (requesting output about the compiled pattern),

information about the result of studying is not included when studying is caused only by -s
and neither -i nor -d is present on the command line. This behaviour means that the output

from tests that are run with and without -s should be identical, except when options that

output information about the actual running of a match are set.

The -M, -t, and -tm options, which give information about resources used, are likely to

produce different output with and without -s. Output may also differ if the /C option is

present on an individual pattern. This uses callouts to trace the the matching process, and

this may be different between studied and non-studied patterns. If the pattern contains

(*MARK) items there may also be differences, for the same reason. The -s command line

option can be overridden for specific patterns that should never be studied (see the /S

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

pattern modifier below).

-t Run each compile, study, and match many times with a timer, and output the resulting

times per compile, study, or match (in milliseconds). Do not set -m with -t, because you

will then get the size output a zillion times, and the timing will be distorted. You can

control the number of iterations that are used for timing by following -t with a number (as

a separate item on the command line). For example, "-t 1000" iterates 1000 times. The

default is to iterate 500000 times.

-tm This is like -t except that it times only the matching phase, not the compile or study phases.

-T -TM These behave like -t and -tm, but in addition, at the end of a run, the total times for all

compiles, studies, and matches are output.

DESCRIPTION
If pcretest is given two filename arguments, it reads from the first and writes to the second. If it is

given only one filename argument, it reads from that file and writes to stdout. Otherwise, it reads from

stdin and writes to stdout, and prompts for each line of input, using "re>" to prompt for regular

expressions, and "data>" to prompt for data lines.

When pcretest is built, a configuration option can specify that it should be linked with the libreadline
library. When this is done, if the input is from a terminal, it is read using the readline() function. This

provides line-editing and history facilities. The output from the -help option states whether or not

readline() will be used.

The program handles any number of sets of input on a single input file. Each set starts with a regular

expression, and continues with any number of data lines to be matched against that pattern.

Each data line is matched separately and independently. If you want to do multi-line matches, you have

to use the \n escape sequence (or \r or \r\n, etc., depending on the newline setting) in a single line of

input to encode the newline sequences. There is no limit on the length of data lines; the input buffer is

automatically extended if it is too small.

An empty line signals the end of the data lines, at which point a new regular expression is read. The

regular expressions are given enclosed in any non-alphanumeric delimiters other than backslash, for

example:

/(a|bc)x+yz/

White space before the initial delimiter is ignored. A regular expression may be continued over several

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

input lines, in which case the newline characters are included within it. It is possible to include the

delimiter within the pattern by escaping it, for example

/abc\/def/

If you do so, the escape and the delimiter form part of the pattern, but since delimiters are always non-

alphanumeric, this does not affect its interpretation. If the terminating delimiter is immediately

followed by a backslash, for example,

/abc/\

then a backslash is added to the end of the pattern. This is done to provide a way of testing the error

condition that arises if a pattern finishes with a backslash, because

/abc\/

is interpreted as the first line of a pattern that starts with "abc/", causing pcretest to read the next line as

a continuation of the regular expression.

PATTERN MODIFIERS
A pattern may be followed by any number of modifiers, which are mostly single characters, though

some of these can be qualified by further characters. Following Perl usage, these are referred to below

as, for example, "the /i modifier", even though the delimiter of the pattern need not always be a slash,

and no slash is used when writing modifiers. White space may appear between the final pattern

delimiter and the first modifier, and between the modifiers themselves. For reference, here is a

complete list of modifiers. They fall into several groups that are described in detail in the following

sections.

/8 set UTF mode

/9 set PCRE_NEVER_UTF (locks out UTF mode)

/? disable UTF validity check

/+ show remainder of subject after match

/= show all captures (not just those that are set)

/A set PCRE_ANCHORED

/B show compiled code

/C set PCRE_AUTO_CALLOUT

/D same as /B plus /I
/E set PCRE_DOLLAR_ENDONLY

/F flip byte order in compiled pattern

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

/f set PCRE_FIRSTLINE

/G find all matches (shorten string)

/g find all matches (use startoffset)

/I show information about pattern

/i set PCRE_CASELESS

/J set PCRE_DUPNAMES

/K show backtracking control names

/L set locale

/M show compiled memory size

/m set PCRE_MULTILINE

/N set PCRE_NO_AUTO_CAPTURE

/O set PCRE_NO_AUTO_POSSESS

/P use the POSIX wrapper

/Q test external stack check function

/S study the pattern after compilation

/s set PCRE_DOTALL

/T select character tables

/U set PCRE_UNGREEDY

/W set PCRE_UCP

/X set PCRE_EXTRA

/x set PCRE_EXTENDED

/Y set PCRE_NO_START_OPTIMIZE

/Z don’t show lengths in /B output

/<any> set PCRE_NEWLINE_ANY

/<anycrlf> set PCRE_NEWLINE_ANYCRLF

/<cr> set PCRE_NEWLINE_CR

/<crlf> set PCRE_NEWLINE_CRLF

/<lf> set PCRE_NEWLINE_LF

/<bsr_anycrlf> set PCRE_BSR_ANYCRLF

/<bsr_unicode> set PCRE_BSR_UNICODE

/<JS> set PCRE_JAVASCRIPT_COMPAT

Perl-compatible modifiers
The /i, /m, /s, and /x modifiers set the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, or

PCRE_EXTENDED options, respectively, when pcre[16|32]_compile() is called. These four modifier

letters have the same effect as they do in Perl. For example:

/caseless/i

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

Modifiers for other PCRE options
The following table shows additional modifiers for setting PCRE compile-time options that do not

correspond to anything in Perl:

/8 PCRE_UTF8) when using the 8-bit

/? PCRE_NO_UTF8_CHECK) library

/8 PCRE_UTF16) when using the 16-bit

/? PCRE_NO_UTF16_CHECK) library

/8 PCRE_UTF32) when using the 32-bit

/? PCRE_NO_UTF32_CHECK) library

/9 PCRE_NEVER_UTF

/A PCRE_ANCHORED

/C PCRE_AUTO_CALLOUT

/E PCRE_DOLLAR_ENDONLY

/f PCRE_FIRSTLINE

/J PCRE_DUPNAMES

/N PCRE_NO_AUTO_CAPTURE

/O PCRE_NO_AUTO_POSSESS

/U PCRE_UNGREEDY

/W PCRE_UCP

/X PCRE_EXTRA

/Y PCRE_NO_START_OPTIMIZE

/<any> PCRE_NEWLINE_ANY

/<anycrlf> PCRE_NEWLINE_ANYCRLF

/<cr> PCRE_NEWLINE_CR

/<crlf> PCRE_NEWLINE_CRLF

/<lf> PCRE_NEWLINE_LF

/<bsr_anycrlf> PCRE_BSR_ANYCRLF

/<bsr_unicode> PCRE_BSR_UNICODE

/<JS> PCRE_JAVASCRIPT_COMPAT

The modifiers that are enclosed in angle brackets are literal strings as shown, including the angle

brackets, but the letters within can be in either case. This example sets multiline matching with CRLF

as the line ending sequence:

/^abc/m<CRLF>

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

As well as turning on the PCRE_UTF8/16/32 option, the /8 modifier causes all non-printing characters

in output strings to be printed using the \x{hh...} notation. Otherwise, those less than 0x100 are output

in hex without the curly brackets.

Full details of the PCRE options are given in the pcreapi documentation.

Finding all matches in a string
Searching for all possible matches within each subject string can be requested by the /g or /G modifier.

After finding a match, PCRE is called again to search the remainder of the subject string. The

difference between /g and /G is that the former uses the startoffset argument to pcre[16|32]_exec() to

start searching at a new point within the entire string (which is in effect what Perl does), whereas the

latter passes over a shortened substring. This makes a difference to the matching process if the pattern

begins with a lookbehind assertion (including \b or \B).

If any call to pcre[16|32]_exec() in a /g or /G sequence matches an empty string, the next call is done

with the PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED flags set in order to search for

another, non-empty, match at the same point. If this second match fails, the start offset is advanced, and

the normal match is retried. This imitates the way Perl handles such cases when using the /g modifier

or the split() function. Normally, the start offset is advanced by one character, but if the newline

convention recognizes CRLF as a newline, and the current character is CR followed by LF, an advance

of two is used.

Other modifiers
There are yet more modifiers for controlling the way pcretest operates.

The /+ modifier requests that as well as outputting the substring that matched the entire pattern, pcretest
should in addition output the remainder of the subject string. This is useful for tests where the subject

contains multiple copies of the same substring. If the + modifier appears twice, the same action is taken

for captured substrings. In each case the remainder is output on the following line with a plus character

following the capture number. Note that this modifier must not immediately follow the /S modifier

because /S+ and /S++ have other meanings.

The /= modifier requests that the values of all potential captured parentheses be output after a match.

By default, only those up to the highest one actually used in the match are output (corresponding to the

return code from pcre[16|32]_exec()). Values in the offsets vector corresponding to higher numbers

should be set to -1, and these are output as "<unset>". This modifier gives a way of checking that this is

happening.

The /B modifier is a debugging feature. It requests that pcretest output a representation of the compiled

code after compilation. Normally this information contains length and offset values; however, if /Z is

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

also present, this data is replaced by spaces. This is a special feature for use in the automatic test

scripts; it ensures that the same output is generated for different internal link sizes.

The /D modifier is a PCRE debugging feature, and is equivalent to /BI, that is, both the /B and the /I
modifiers.

The /F modifier causes pcretest to flip the byte order of the 2-byte and 4-byte fields in the compiled

pattern. This facility is for testing the feature in PCRE that allows it to execute patterns that were

compiled on a host with a different endianness. This feature is not available when the POSIX interface

to PCRE is being used, that is, when the /P pattern modifier is specified. See also the section about

saving and reloading compiled patterns below.

The /I modifier requests that pcretest output information about the compiled pattern (whether it is

anchored, has a fixed first character, and so on). It does this by calling pcre[16|32]_fullinfo() after

compiling a pattern. If the pattern is studied, the results of that are also output. In this output, the word

"char" means a non-UTF character, that is, the value of a single data item (8-bit, 16-bit, or 32-bit,

depending on the library that is being tested).

The /K modifier requests pcretest to show names from backtracking control verbs that are returned

from calls to pcre[16|32]_exec(). It causes pcretest to create a pcre[16|32]_extra block if one has not

already been created by a call to pcre[16|32]_study(), and to set the PCRE_EXTRA_MARK flag and

the mark field within it, every time that pcre[16|32]_exec() is called. If the variable that the mark field

points to is non-NULL for a match, non-match, or partial match, pcretest prints the string to which it

points. For a match, this is shown on a line by itself, tagged with "MK:". For a non-match it is added to

the message.

The /L modifier must be followed directly by the name of a locale, for example,

/pattern/Lfr_FR

For this reason, it must be the last modifier. The given locale is set, pcre[16|32]_maketables() is called

to build a set of character tables for the locale, and this is then passed to pcre[16|32]_compile() when

compiling the regular expression. Without an /L (or /T) modifier, NULL is passed as the tables pointer;

that is, /L applies only to the expression on which it appears.

The /M modifier causes the size in bytes of the memory block used to hold the compiled pattern to be

output. This does not include the size of the pcre[16|32] block; it is just the actual compiled data. If the

pattern is successfully studied with the PCRE_STUDY_JIT_COMPILE option, the size of the JIT

compiled code is also output.

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

The /Q modifier is used to test the use of pcre_stack_guard. It must be followed by ’0’ or ’1’,

specifying the return code to be given from an external function that is passed to PCRE and used for

stack checking during compilation (see the pcreapi documentation for details).

The /S modifier causes pcre[16|32]_study() to be called after the expression has been compiled, and the

results used when the expression is matched. There are a number of qualifying characters that may

follow /S. They may appear in any order.

If /S is followed by an exclamation mark, pcre[16|32]_study() is called with the

PCRE_STUDY_EXTRA_NEEDED option, causing it always to return a pcre_extra block, even when

studying discovers no useful information.

If /S is followed by a second S character, it suppresses studying, even if it was requested externally by

the -s command line option. This makes it possible to specify that certain patterns are always studied,

and others are never studied, independently of -s. This feature is used in the test files in a few cases

where the output is different when the pattern is studied.

If the /S modifier is followed by a + character, the call to pcre[16|32]_study() is made with all the JIT

study options, requesting just-in-time optimization support if it is available, for both normal and partial

matching. If you want to restrict the JIT compiling modes, you can follow /S+ with a digit in the range

1 to 7:

1 normal match only

2 soft partial match only

3 normal match and soft partial match

4 hard partial match only

6 soft and hard partial match

7 all three modes (default)

If /S++ is used instead of /S+ (with or without a following digit), the text "(JIT)" is added to the first

output line after a match or no match when JIT-compiled code was actually used.

Note that there is also an independent /+ modifier; it must not be given immediately after /S or /S+
because this will be misinterpreted.

If JIT studying is successful, the compiled JIT code will automatically be used when

pcre[16|32]_exec() is run, except when incompatible run-time options are specified. For more details,

see the pcrejit documentation. See also the \J escape sequence below for a way of setting the size of the

JIT stack.

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

Finally, if /S is followed by a minus character, JIT compilation is suppressed, even if it was requested

externally by the -s command line option. This makes it possible to specify that JIT is never to be used

for certain patterns.

The /T modifier must be followed by a single digit. It causes a specific set of built-in character tables to

be passed to pcre[16|32]_compile(). It is used in the standard PCRE tests to check behaviour with

different character tables. The digit specifies the tables as follows:

0 the default ASCII tables, as distributed in

pcre_chartables.c.dist

1 a set of tables defining ISO 8859 characters

In table 1, some characters whose codes are greater than 128 are identified as letters, digits, spaces, etc.

Using the POSIX wrapper API
The /P modifier causes pcretest to call PCRE via the POSIX wrapper API rather than its native API.

This supports only the 8-bit library. When /P is set, the following modifiers set options for the

regcomp() function:

/i REG_ICASE

/m REG_NEWLINE

/N REG_NOSUB

/s REG_DOTALL)

/U REG_UNGREEDY) These options are not part of

/W REG_UCP) the POSIX standard

/8 REG_UTF8)

The /+ modifier works as described above. All other modifiers are ignored.

Locking out certain modifiers
PCRE can be compiled with or without support for certain features such as UTF-8/16/32 or Unicode

properties. Accordingly, the standard tests are split up into a number of different files that are selected

for running depending on which features are available. When updating the tests, it is all too easy to put

a new test into the wrong file by mistake; for example, to put a test that requires UTF support into a file

that is used when it is not available. To help detect such mistakes as early as possible, there is a facility

for locking out specific modifiers. If an input line for pcretest starts with the string "< forbid " the

following sequence of characters is taken as a list of forbidden modifiers. For example, in the test files

that must not use UTF or Unicode property support, this line appears:

< forbid 8W

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

This locks out the /8 and /W modifiers. An immediate error is given if they are subsequently

encountered. If the character string contains < but not >, all the multi-character modifiers that begin

with < are locked out. Otherwise, such modifiers must be explicitly listed, for example:

< forbid <JS><cr>

There must be a single space between < and "forbid" for this feature to be recognised. If there is not,

the line is interpreted either as a request to re-load a pre-compiled pattern (see "SAVING AND

RELOADING COMPILED PATTERNS" below) or, if there is a another < character, as a pattern that

uses < as its delimiter.

DATA LINES
Before each data line is passed to pcre[16|32]_exec(), leading and trailing white space is removed, and

it is then scanned for \ escapes. Some of these are pretty esoteric features, intended for checking out

some of the more complicated features of PCRE. If you are just testing "ordinary" regular expressions,

you probably don’t need any of these. The following escapes are recognized:

\a alarm (BEL, \x07)

\b backspace (\x08)

\e escape (\x27)

\f form feed (\x0c)

\n newline (\x0a)

\qdd set the PCRE_MATCH_LIMIT limit to dd

(any number of digits)

\r carriage return (\x0d)

\t tab (\x09)

\v vertical tab (\x0b)

\nnn octal character (up to 3 octal digits); always

a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode

\o{dd...} octal character (any number of octal digits}

\xhh hexadecimal byte (up to 2 hex digits)

\x{hh...} hexadecimal character (any number of hex digits)

\A pass the PCRE_ANCHORED option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec()

\B pass the PCRE_NOTBOL option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec()

\Cdd call pcre[16|32]_copy_substring() for substring dd

after a successful match (number less than 32)

\Cname call pcre[16|32]_copy_named_substring() for substring

"name" after a successful match (name termin-

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

ated by next non alphanumeric character)

\C+ show the current captured substrings at callout

time

\C- do not supply a callout function

\C!n return 1 instead of 0 when callout number n is

reached

\C!n!m return 1 instead of 0 when callout number n is

reached for the nth time

\C*n pass the number n (may be negative) as callout

data; this is used as the callout return value

\D use the pcre[16|32]_dfa_exec() match function

\F only shortest match for pcre[16|32]_dfa_exec()
\Gdd call pcre[16|32]_get_substring() for substring dd

after a successful match (number less than 32)

\Gname call pcre[16|32]_get_named_substring() for substring

"name" after a successful match (name termin-

ated by next non-alphanumeric character)

\Jdd set up a JIT stack of dd kilobytes maximum (any

number of digits)

\L call pcre[16|32]_get_substringlist() after a

successful match

\M discover the minimum MATCH_LIMIT and

MATCH_LIMIT_RECURSION settings

\N pass the PCRE_NOTEMPTY option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec(); if used twice, pass the

PCRE_NOTEMPTY_ATSTART option

\Odd set the size of the output vector passed to

pcre[16|32]_exec() to dd (any number of digits)

\P pass the PCRE_PARTIAL_SOFT option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec(); if used twice, pass the

PCRE_PARTIAL_HARD option

\Qdd set the PCRE_MATCH_LIMIT_RECURSION limit to dd

(any number of digits)

\R pass the PCRE_DFA_RESTART option to pcre[16|32]_dfa_exec()
\S output details of memory get/free calls during matching

\Y pass the PCRE_NO_START_OPTIMIZE option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec()

\Z pass the PCRE_NOTEOL option to pcre[16|32]_exec()
or pcre[16|32]_dfa_exec()

\? pass the PCRE_NO_UTF[8|16|32]_CHECK option to

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
\>dd start the match at offset dd (optional "-"; then

any number of digits); this sets the startoffset

argument for pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
\<cr> pass the PCRE_NEWLINE_CR option to pcre[16|32]_exec()

or pcre[16|32]_dfa_exec()
\<lf> pass the PCRE_NEWLINE_LF option to pcre[16|32]_exec()

or pcre[16|32]_dfa_exec()
\<crlf> pass the PCRE_NEWLINE_CRLF option to pcre[16|32]_exec()

or pcre[16|32]_dfa_exec()
\<anycrlf> pass the PCRE_NEWLINE_ANYCRLF option to pcre[16|32]_exec()

or pcre[16|32]_dfa_exec()
\<any> pass the PCRE_NEWLINE_ANY option to pcre[16|32]_exec()

or pcre[16|32]_dfa_exec()

The use of \x{hh...} is not dependent on the use of the /8 modifier on the pattern. It is recognized

always. There may be any number of hexadecimal digits inside the braces; invalid values provoke error

messages.

Note that \xhh specifies one byte rather than one character in UTF-8 mode; this makes it possible to

construct invalid UTF-8 sequences for testing purposes. On the other hand, \x{hh} is interpreted as a

UTF-8 character in UTF-8 mode, generating more than one byte if the value is greater than 127. When

testing the 8-bit library not in UTF-8 mode, \x{hh} generates one byte for values less than 256, and

causes an error for greater values.

In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it possible to construct invalid

UTF-16 sequences for testing purposes.

In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makes it possible to construct invalid

UTF-32 sequences for testing purposes.

The escapes that specify line ending sequences are literal strings, exactly as shown. No more than one

newline setting should be present in any data line.

A backslash followed by anything else just escapes the anything else. If the very last character is a

backslash, it is ignored. This gives a way of passing an empty line as data, since a real empty line

terminates the data input.

The \J escape provides a way of setting the maximum stack size that is used by the just-in-time

optimization code. It is ignored if JIT optimization is not being used. Providing a stack that is larger

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

than the default 32K is necessary only for very complicated patterns.

If \M is present, pcretest calls pcre[16|32]_exec() several times, with different values in the

match_limit and match_limit_recursion fields of the pcre[16|32]_extra data structure, until it finds the

minimum numbers for each parameter that allow pcre[16|32]_exec() to complete without error.

Because this is testing a specific feature of the normal interpretive pcre[16|32]_exec() execution, the

use of any JIT optimization that might have been set up by the /S+ qualifier of -s+ option is disabled.

The match_limit number is a measure of the amount of backtracking that takes place, and checking it

out can be instructive. For most simple matches, the number is quite small, but for patterns with very

large numbers of matching possibilities, it can become large very quickly with increasing length of

subject string. The match_limit_recursion number is a measure of how much stack (or, if PCRE is

compiled with NO_RECURSE, how much heap) memory is needed to complete the match attempt.

When \O is used, the value specified may be higher or lower than the size set by the -O command line

option (or defaulted to 45); \O applies only to the call of pcre[16|32]_exec() for the line in which it

appears.

If the /P modifier was present on the pattern, causing the POSIX wrapper API to be used, the only

option-setting sequences that have any effect are \B, \N, and \Z, causing REG_NOTBOL,

REG_NOTEMPTY, and REG_NOTEOL, respectively, to be passed to regexec().

THE ALTERNATIVE MATCHING FUNCTION
By default, pcretest uses the standard PCRE matching function, pcre[16|32]_exec() to match each data

line. PCRE also supports an alternative matching function, pcre[16|32]_dfa_test(), which operates in a

different way, and has some restrictions. The differences between the two functions are described in the

pcrematching documentation.

If a data line contains the \D escape sequence, or if the command line contains the -dfa option, the

alternative matching function is used. This function finds all possible matches at a given point. If,

however, the \F escape sequence is present in the data line, it stops after the first match is found. This is

always the shortest possible match.

DEFAULT OUTPUT FROM PCRETEST
This section describes the output when the normal matching function, pcre[16|32]_exec(), is being

used.

When a match succeeds, pcretest outputs the list of captured substrings that pcre[16|32]_exec() returns,

starting with number 0 for the string that matched the whole pattern. Otherwise, it outputs "No match"

when the return is PCRE_ERROR_NOMATCH, and "Partial match:" followed by the partially

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

matching substring when pcre[16|32]_exec() returns PCRE_ERROR_PARTIAL. (Note that this is the

entire substring that was inspected during the partial match; it may include characters before the actual

match start if a lookbehind assertion, \K, \b, or \B was involved.) For any other return, pcretest outputs

the PCRE negative error number and a short descriptive phrase. If the error is a failed UTF string

check, the offset of the start of the failing character and the reason code are also output, provided that

the size of the output vector is at least two. Here is an example of an interactive pcretest run.

$ pcretest

PCRE version 8.13 2011-04-30

re> /^abc(\d+)/

data> abc123

0: abc123

1: 123

data> xyz

No match

Unset capturing substrings that are not followed by one that is set are not returned by

pcre[16|32]_exec(), and are not shown by pcretest. In the following example, there are two capturing

substrings, but when the first data line is matched, the second, unset substring is not shown. An

"internal" unset substring is shown as "<unset>", as for the second data line.

re> /(a)|(b)/

data> a

0: a

1: a

data> b

0: b

1: <unset>

2: b

If the strings contain any non-printing characters, they are output as \xhh escapes if the value is less

than 256 and UTF mode is not set. Otherwise they are output as \x{hh...} escapes. See below for the

definition of non-printing characters. If the pattern has the /+ modifier, the output for substring 0 is

followed by the the rest of the subject string, identified by "0+" like this:

re> /cat/+

data> cataract

0: cat

0+ aract

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

If the pattern has the /g or /G modifier, the results of successive matching attempts are output in

sequence, like this:

re> /\Bi(\w\w)/g

data> Mississippi

0: iss

1: ss

0: iss

1: ss

0: ipp

1: pp

"No match" is output only if the first match attempt fails. Here is an example of a failure message (the

offset 4 that is specified by \>4 is past the end of the subject string):

re> /xyz/

data> xyz\>4

Error -24 (bad offset value)

If any of the sequences \C, \G, or \L are present in a data line that is successfully matched, the

substrings extracted by the convenience functions are output with C, G, or L after the string number

instead of a colon. This is in addition to the normal full list. The string length (that is, the return from

the extraction function) is given in parentheses after each string for \C and \G.

Note that whereas patterns can be continued over several lines (a plain ">" prompt is used for

continuations), data lines may not. However newlines can be included in data by means of the \n escape

(or \r, \r\n, etc., depending on the newline sequence setting).

OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
When the alternative matching function, pcre[16|32]_dfa_exec(), is used (by means of the \D escape

sequence or the -dfa command line option), the output consists of a list of all the matches that start at

the first point in the subject where there is at least one match. For example:

re> /(tang|tangerine|tan)/

data> yellow tangerine\D

0: tangerine

1: tang

2: tan

(Using the normal matching function on this data finds only "tang".) The longest matching string is

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

always given first (and numbered zero). After a PCRE_ERROR_PARTIAL return, the output is

"Partial match:", followed by the partially matching substring. (Note that this is the entire substring that

was inspected during the partial match; it may include characters before the actual match start if a

lookbehind assertion, \K, \b, or \B was involved.)

If /g is present on the pattern, the search for further matches resumes at the end of the longest match.

For example:

re> /(tang|tangerine|tan)/g

data> yellow tangerine and tangy sultana\D

0: tangerine

1: tang

2: tan

0: tang

1: tan

0: tan

Since the matching function does not support substring capture, the escape sequences that are

concerned with captured substrings are not relevant.

RESTARTING AFTER A PARTIAL MATCH
When the alternative matching function has given the PCRE_ERROR_PARTIAL return, indicating

that the subject partially matched the pattern, you can restart the match with additional subject data by

means of the \R escape sequence. For example:

re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

data> 23ja\P\D

Partial match: 23ja

data> n05\R\D

0: n05

For further information about partial matching, see the pcrepartial documentation.

CALLOUTS
If the pattern contains any callout requests, pcretest’s callout function is called during matching. This

works with both matching functions. By default, the called function displays the callout number, the

start and current positions in the text at the callout time, and the next pattern item to be tested. For

example:

--->pqrabcdef

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

0 ^ ^ \d

This output indicates that callout number 0 occurred for a match attempt starting at the fourth character

of the subject string, when the pointer was at the seventh character of the data, and when the next

pattern item was \d. Just one circumflex is output if the start and current positions are the same.

Callouts numbered 255 are assumed to be automatic callouts, inserted as a result of the /C pattern

modifier. In this case, instead of showing the callout number, the offset in the pattern, preceded by a

plus, is output. For example:

re> /\d?[A-E]*/C

data> E*

--->E*

+0 ^ \d?

+3 ^ [A-E]

+8 ^^ *

+10 ^ ^

0: E*

If a pattern contains (*MARK) items, an additional line is output whenever a change of latest mark is

passed to the callout function. For example:

re> /a(*MARK:X)bc/C

data> abc

--->abc

+0 ^ a

+1 ^^ (*MARK:X)

+10 ^^ b

Latest Mark: X

+11 ^ ^ c

+12 ^ ^

0: abc

The mark changes between matching "a" and "b", but stays the same for the rest of the match, so

nothing more is output. If, as a result of backtracking, the mark reverts to being unset, the text

"<unset>" is output.

The callout function in pcretest returns zero (carry on matching) by default, but you can use a \C item

in a data line (as described above) to change this and other parameters of the callout.

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

Inserting callouts can be helpful when using pcretest to check complicated regular expressions. For

further information about callouts, see the pcrecallout documentation.

NON-PRINTING CHARACTERS
When pcretest is outputting text in the compiled version of a pattern, bytes other than 32-126 are

always treated as non-printing characters are are therefore shown as hex escapes.

When pcretest is outputting text that is a matched part of a subject string, it behaves in the same way,

unless a different locale has been set for the pattern (using the /L modifier). In this case, the isprint()
function to distinguish printing and non-printing characters.

SAVING AND RELOADING COMPILED PATTERNS
The facilities described in this section are not available when the POSIX interface to PCRE is being

used, that is, when the /P pattern modifier is specified.

When the POSIX interface is not in use, you can cause pcretest to write a compiled pattern to a file, by

following the modifiers with > and a file name. For example:

/pattern/im >/some/file

See the pcreprecompile documentation for a discussion about saving and re-using compiled patterns.

Note that if the pattern was successfully studied with JIT optimization, the JIT data cannot be saved.

The data that is written is binary. The first eight bytes are the length of the compiled pattern data

followed by the length of the optional study data, each written as four bytes in big-endian order (most

significant byte first). If there is no study data (either the pattern was not studied, or studying did not

return any data), the second length is zero. The lengths are followed by an exact copy of the compiled

pattern. If there is additional study data, this (excluding any JIT data) follows immediately after the

compiled pattern. After writing the file, pcretest expects to read a new pattern.

A saved pattern can be reloaded into pcretest by specifying < and a file name instead of a pattern.

There must be no space between < and the file name, which must not contain a < character, as

otherwise pcretest will interpret the line as a pattern delimited by < characters. For example:

re> </some/file

Compiled pattern loaded from /some/file

No study data

If the pattern was previously studied with the JIT optimization, the JIT information cannot be saved

and restored, and so is lost. When the pattern has been loaded, pcretest proceeds to read data lines in

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

the usual way.

You can copy a file written by pcretest to a different host and reload it there, even if the new host has

opposite endianness to the one on which the pattern was compiled. For example, you can compile on an

i86 machine and run on a SPARC machine. When a pattern is reloaded on a host with different

endianness, the confirmation message is changed to:

Compiled pattern (byte-inverted) loaded from /some/file

The test suite contains some saved pre-compiled patterns with different endianness. These are reloaded

using "<!" instead of just "<". This suppresses the "(byte-inverted)" text so that the output is the same

on all hosts. It also forces debugging output once the pattern has been reloaded.

File names for saving and reloading can be absolute or relative, but note that the shell facility of

expanding a file name that starts with a tilde (~) is not available.

The ability to save and reload files in pcretest is intended for testing and experimentation. It is not

intended for production use because only a single pattern can be written to a file. Furthermore, there is

no facility for supplying custom character tables for use with a reloaded pattern. If the original pattern

was compiled with custom tables, an attempt to match a subject string using a reloaded pattern is likely

to cause pcretest to crash. Finally, if you attempt to load a file that is not in the correct format, the

result is undefined.

SEE ALSO
pcre(3), pcre16(3), pcre32(3), pcreapi(3), pcrecallout(3), pcrejit, pcrematching(3), pcrepartial(d),

pcrepattern(3), pcreprecompile(3).

AUTHOR
Philip Hazel

University Computing Service

Cambridge CB2 3QH, England.

REVISION
Last updated: 10 February 2020

Copyright (c) 1997-2020 University of Cambridge.

PCRETEST(1) FreeBSD General Commands Manual PCRETEST(1)

PCRE 8.44 10 February 2020 PCRETEST(1)

