
NAME
perlclib - Internal replacements for standard C library functions

DESCRIPTION
One thing Perl porters should note is that perl doesn’t tend to use that much of the C standard library

internally; you’ll see very little use of, for example, the ctype.h functions in there. This is because Perl

tends to reimplement or abstract standard library functions, so that we know exactly how they’re going

to operate.

This is a reference card for people who are familiar with the C library and who want to do things the

Perl way; to tell them which functions they ought to use instead of the more normal C functions.

Conventions
In the following tables:

"t" is a type.

"p"

is a pointer.

"n"

is a number.

"s" is a string.

"sv", "av", "hv", etc. represent variables of their respective types.

File Operations
Instead of the stdio.h functions, you should use the Perl abstraction layer. Instead of "FILE*" types,

you need to be handling "PerlIO*" types. Don’t forget that with the new PerlIO layered I/O abstraction

"FILE*" types may not even be available. See also the "perlapio" documentation for more information

about the following functions:

Instead Of: Use:

stdin PerlIO_stdin()

stdout PerlIO_stdout()

stderr PerlIO_stderr()

fopen(fn, mode) PerlIO_open(fn, mode)

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)



freopen(fn, mode, stream) PerlIO_reopen(fn, mode, perlio) (Dep-

recated)

fflush(stream) PerlIO_flush(perlio)

fclose(stream) PerlIO_close(perlio)

File Input and Output
Instead Of: Use:

fprintf(stream, fmt, ...) PerlIO_printf(perlio, fmt, ...)

[f]getc(stream) PerlIO_getc(perlio)

[f]putc(stream, n) PerlIO_putc(perlio, n)

ungetc(n, stream) PerlIO_ungetc(perlio, n)

Note that the PerlIO equivalents of "fread" and "fwrite" are slightly different from their C library

counterparts:

fread(p, size, n, stream) PerlIO_read(perlio, buf, numbytes)

fwrite(p, size, n, stream) PerlIO_write(perlio, buf, numbytes)

fputs(s, stream) PerlIO_puts(perlio, s)

There is no equivalent to "fgets"; one should use "sv_gets" instead:

fgets(s, n, stream) sv_gets(sv, perlio, append)

File Positioning
Instead Of: Use:

feof(stream) PerlIO_eof(perlio)

fseek(stream, n, whence) PerlIO_seek(perlio, n, whence)

rewind(stream) PerlIO_rewind(perlio)

fgetpos(stream, p) PerlIO_getpos(perlio, sv)

fsetpos(stream, p) PerlIO_setpos(perlio, sv)

ferror(stream) PerlIO_error(perlio)

clearerr(stream) PerlIO_clearerr(perlio)

Memory Management and String Handling

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)



Instead Of: Use:

t* p = malloc(n) Newx(p, n, t)

t* p = calloc(n, s) Newxz(p, n, t)

p = realloc(p, n) Renew(p, n, t)

memcpy(dst, src, n) Copy(src, dst, n, t)

memmove(dst, src, n) Move(src, dst, n, t)

memcpy(dst, src, sizeof(t)) StructCopy(src, dst, t)

memset(dst, 0, n * sizeof(t)) Zero(dst, n, t)

memzero(dst, 0) Zero(dst, n, char)

free(p) Safefree(p)

strdup(p) savepv(p)

strndup(p, n) savepvn(p, n) (Hey, strndup doesn’t

exist!)

strstr(big, little) instr(big, little)

strcmp(s1, s2) strLE(s1, s2) / strEQ(s1, s2)

/ strGT(s1,s2)

strncmp(s1, s2, n) strnNE(s1, s2, n) / strnEQ(s1, s2, n)

memcmp(p1, p2, n) memNE(p1, p2, n)

!memcmp(p1, p2, n) memEQ(p1, p2, n)

Notice the different order of arguments to "Copy" and "Move" than used in "memcpy" and

"memmove".

Most of the time, though, you’ll want to be dealing with SVs internally instead of raw "char *" strings:

strlen(s) sv_len(sv)

strcpy(dt, src) sv_setpv(sv, s)

strncpy(dt, src, n) sv_setpvn(sv, s, n)

strcat(dt, src) sv_catpv(sv, s)

strncat(dt, src) sv_catpvn(sv, s)

sprintf(s, fmt, ...) sv_setpvf(sv, fmt, ...)

Note also the existence of "sv_catpvf" and "sv_vcatpvfn", combining concatenation with formatting.

Sometimes instead of zeroing the allocated heap by using Newxz() you should consider "poisoning" the

data. This means writing a bit pattern into it that should be illegal as pointers (and floating point

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)



numbers), and also hopefully surprising enough as integers, so that any code attempting to use the data

without forethought will break sooner rather than later. Poisoning can be done using the Poison()
macros, which have similar arguments to Zero():

PoisonWith(dst, n, t, b) scribble memory with byte b

PoisonNew(dst, n, t) equal to PoisonWith(dst, n, t, 0xAB)

PoisonFree(dst, n, t) equal to PoisonWith(dst, n, t, 0xEF)

Poison(dst, n, t) equal to PoisonFree(dst, n, t)

Character Class Tests
There are several types of character class tests that Perl implements. The only ones described here are

those that directly correspond to C library functions that operate on 8-bit characters, but there are

equivalents that operate on wide characters, and UTF-8 encoded strings. All are more fully described

in "Character classification" in perlapi and "Character case changing" in perlapi.

The C library routines listed in the table below return values based on the current locale. Use the

entries in the final column for that functionality. The other two columns always assume a POSIX (or

C) locale. The entries in the ASCII column are only meaningful for ASCII inputs, returning FALSE

for anything else. Use these only when you know that is what you want. The entries in the Latin1

column assume that the non-ASCII 8-bit characters are as Unicode defines, them, the same as

ISO-8859-1, often called Latin 1.

Instead Of: Use for ASCII: Use for Latin1: Use for locale:

isalnum(c) isALPHANUMERIC(c) isALPHANUMERIC_L1(c) isALPHANUMERIC_LC(c)

isalpha(c) isALPHA(c) isALPHA_L1(c) isALPHA_LC(u )

isascii(c) isASCII(c) isASCII_LC(c)

isblank(c) isBLANK(c) isBLANK_L1(c) isBLANK_LC(c)

iscntrl(c) isCNTRL(c) isCNTRL_L1(c) isCNTRL_LC(c)

isdigit(c) isDIGIT(c) isDIGIT_L1(c) isDIGIT_LC(c)

isgraph(c) isGRAPH(c) isGRAPH_L1(c) isGRAPH_LC(c)

islower(c) isLOWER(c) isLOWER_L1(c) isLOWER_LC(c)

isprint(c) isPRINT(c) isPRINT_L1(c) isPRINT_LC(c)

ispunct(c) isPUNCT(c) isPUNCT_L1(c) isPUNCT_LC(c)

isspace(c) isSPACE(c) isSPACE_L1(c) isSPACE_LC(c)

isupper(c) isUPPER(c) isUPPER_L1(c) isUPPER_LC(c)

isxdigit(c) isXDIGIT(c) isXDIGIT_L1(c) isXDIGIT_LC(c)

tolower(c) toLOWER(c) toLOWER_L1(c)

toupper(c) toUPPER(c)

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)



To emphasize that you are operating only on ASCII characters, you can append "_A" to each of the

macros in the ASCII column: "isALPHA_A", "isDIGIT_A", and so on.

(There is no entry in the Latin1 column for "isascii" even though there is an "isASCII_L1", which is

identical to "isASCII"; the latter name is clearer. There is no entry in the Latin1 column for "toupper"

because the result can be non-Latin1. You have to use "toUPPER_uvchr", as described in "Character

case changing" in perlapi.)

stdlib.h functions
Instead Of: Use:

atof(s) Atof(s)

atoi(s) grok_atoUV(s, &uv, &e)

atol(s) grok_atoUV(s, &uv, &e)

strtod(s, &p) Strtod(s, &p)

strtol(s, &p, n) Strtol(s, &p, b)

strtoul(s, &p, n) Strtoul(s, &p, b)

Typical use is to do range checks on "uv" before casting:

int i; UV uv;

char* end_ptr = input_end;

if (grok_atoUV(input, &uv, &end_ptr)

&& uv <= INT_MAX)

i = (int)uv;

... /* continue parsing from end_ptr */

} else {

... /* parse error: not a decimal integer in range 0 .. MAX_IV */

}

Notice also the "grok_bin", "grok_hex", and "grok_oct" functions in numeric.c for converting strings

representing numbers in the respective bases into "NV"s. Note that grok_atoUV() doesn’t handle

negative inputs, or leading whitespace (being purposefully strict).

Note that strtol() and strtoul() may be disguised as Strtol(), Strtoul(), Atol(), Atoul(). Avoid those, too.

In theory "Strtol" and "Strtoul" may not be defined if the machine perl is built on doesn’t actually have

strtol and strtoul. But as those 2 functions are part of the 1989 ANSI C spec we suspect you’ll find

them everywhere by now.

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)



int rand() double Drand01()

srand(n) { seedDrand01((Rand_seed_t)n);

PL_srand_called = TRUE; }

exit(n) my_exit(n)

system(s) Don’t. Look at pp_system or use my_popen.

getenv(s) PerlEnv_getenv(s)

setenv(s, val) my_setenv(s, val)

Miscellaneous functions
You should not even want to use setjmp.h functions, but if you think you do, use the "JMPENV" stack

in scope.h instead.

For "signal"/"sigaction", use "rsignal(signo, handler)".

SEE ALSO
perlapi, perlapio, perlguts

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

perl v5.34.3 2023-11-28 PERLCLIB(1)


