
NAME
perlmroapi - Perl method resolution plugin interface

DESCRIPTION
As of Perl 5.10.1 there is a new interface for plugging and using method resolution orders other than

the default (linear depth first search). The C3 method resolution order added in 5.10.0 has been re-

implemented as a plugin, without changing its Perl-space interface.

Each plugin should register itself by providing the following structure

struct mro_alg {

AV *(*resolve)(pTHX_ HV *stash, U32 level);

const char *name;

U16 length;

U16 kflags;

U32 hash;

};

and calling "Perl_mro_register":

Perl_mro_register(aTHX_ &my_mro_alg);

resolve

Pointer to the linearisation function, described below.

name

Name of the MRO, either in ISO-8859-1 or UTF-8.

length

Length of the name.

kflags

If the name is given in UTF-8, set this to "HVhek_UTF8". The value is passed direct as the

parameter kflags to "hv_common()".

hash

A precomputed hash value for the MRO’s name, or 0.

Callbacks
The "resolve" function is called to generate a linearised ISA for the given stash, using this MRO. It is

PERLMROAPI(1) Perl Programmers Reference Guide PERLMROAPI(1)

perl v5.34.3 2023-11-28 PERLMROAPI(1)



called with a pointer to the stash, and a level of 0. The core always sets level to 0 when it calls your

function - the parameter is provided to allow your implementation to track depth if it needs to recurse.

The function should return a reference to an array containing the parent classes in order. The names of

the classes should be the result of calling "HvENAME()" on the stash. In those cases where

"HvENAME()" returns null, "HvNAME()" should be used instead.

The caller is responsible for incrementing the reference count of the array returned if it wants to keep

the structure. Hence, if you have created a temporary value that you keep no pointer to, "sv_2mortal()"

to ensure that it is disposed of correctly. If you have cached your return value, then return a pointer to it

without changing the reference count.

Caching
Computing MROs can be expensive. The implementation provides a cache, in which you can store a

single "SV *", or anything that can be cast to "SV *", such as "AV *". To read your private value, use

the macro "MRO_GET_PRIVATE_DATA()", passing it the "mro_meta" structure from the stash, and

a pointer to your "mro_alg" structure:

meta = HvMROMETA(stash);

private_sv = MRO_GET_PRIVATE_DATA(meta, &my_mro_alg);

To set your private value, call "Perl_mro_set_private_data()":

Perl_mro_set_private_data(aTHX_ meta, &c3_alg, private_sv);

The private data cache will take ownership of a reference to private_sv, much the same way that

"hv_store()" takes ownership of a reference to the value that you pass it.

Examples
For examples of MRO implementations, see "S_mro_get_linear_isa_c3()" and the "BOOT:" section of

ext/mro/mro.xs, and "S_mro_get_linear_isa_dfs()" in mro_core.c

AUTHORS
The implementation of the C3 MRO and switchable MROs within the perl core was written by

Brandon L Black. Nicholas Clark created the pluggable interface, refactored Brandon’s implementation

to work with it, and wrote this document.

PERLMROAPI(1) Perl Programmers Reference Guide PERLMROAPI(1)

perl v5.34.3 2023-11-28 PERLMROAPI(1)


