
NAME
perlopentut - simple recipes for opening files and pipes in Perl

DESCRIPTION
Whenever you do I/O on a file in Perl, you do so through what in Perl is called a filehandle. A

filehandle is an internal name for an external file. It is the job of the "open" function to make the

association between the internal name and the external name, and it is the job of the "close" function to

break that association.

For your convenience, Perl sets up a few special filehandles that are already open when you run. These

include "STDIN", "STDOUT", "STDERR", and "ARGV". Since those are pre-opened, you can use

them right away without having to go to the trouble of opening them yourself:

print STDERR "This is a debugging message.\n";

print STDOUT "Please enter something: ";

$response = <STDIN> // die "how come no input?";

print STDOUT "Thank you!\n";

while (<ARGV>) { ... }

As you see from those examples, "STDOUT" and "STDERR" are output handles, and "STDIN" and

"ARGV" are input handles. They are in all capital letters because they are reserved to Perl, much like

the @ARGV array and the %ENV hash are. Their external associations were set up by your shell.

You will need to open every other filehandle on your own. Although there are many variants, the most

common way to call Perl’s open() function is with three arguments and one return value:

" OK = open(HANDLE, MODE, PATHNAME)"

Where:

OK will be some defined value if the open succeeds, but "undef" if it fails;

HANDLE

should be an undefined scalar variable to be filled in by the "open" function if it succeeds;

MODE

is the access mode and the encoding format to open the file with;

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

PATHNAME

is the external name of the file you want opened.

Most of the complexity of the "open" function lies in the many possible values that the MODE

parameter can take on.

One last thing before we show you how to open files: opening files does not (usually) automatically

lock them in Perl. See perlfaq5 for how to lock.

Opening Text Files
Opening Text Files for Reading

If you want to read from a text file, first open it in read-only mode like this:

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

my $handle = undef; # this will be filled in on success

open($handle, "< $encoding", $filename)

|| die "$0: can’t open $filename for reading: $!";

As with the shell, in Perl the "<" is used to open the file in read-only mode. If it succeeds, Perl

allocates a brand new filehandle for you and fills in your previously undefined $handle argument with

a reference to that handle.

Now you may use functions like "readline", "read", "getc", and "sysread" on that handle. Probably the

most common input function is the one that looks like an operator:

$line = readline($handle);

$line = <$handle>; # same thing

Because the "readline" function returns "undef" at end of file or upon error, you will sometimes see it

used this way:

$line = <$handle>;

if (defined $line) {

do something with $line

}

else {

$line is not valid, so skip it

}

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

You can also just quickly "die" on an undefined value this way:

$line = <$handle> // die "no input found";

However, if hitting EOF is an expected and normal event, you do not want to exit simply because you

have run out of input. Instead, you probably just want to exit an input loop. You can then test to see if

an actual error has caused the loop to terminate, and act accordingly:

while (<$handle>) {

do something with data in $_

}

if ($!) {

die "unexpected error while reading from $filename: $!";

}

A Note on Encodings: Having to specify the text encoding every time might seem a bit of a bother. To

set up a default encoding for "open" so that you don’t have to supply it each time, you can use the

"open" pragma:

use open qw< :encoding(UTF-8) >;

Once you’ve done that, you can safely omit the encoding part of the open mode:

open($handle, "<", $filename)

|| die "$0: can’t open $filename for reading: $!";

But never use the bare "<" without having set up a default encoding first. Otherwise, Perl cannot know

which of the many, many, many possible flavors of text file you have, and Perl will have no idea how

to correctly map the data in your file into actual characters it can work with. Other common encoding

formats including "ASCII", "ISO-8859-1", "ISO-8859-15", "Windows-1252", "MacRoman", and even

"UTF-16LE". See perlunitut for more about encodings.

Opening Text Files for Writing
When you want to write to a file, you first have to decide what to do about any existing contents of that

file. You have two basic choices here: to preserve or to clobber.

If you want to preserve any existing contents, then you want to open the file in append mode. As in the

shell, in Perl you use ">>" to open an existing file in append mode. ">>" creates the file if it does not

already exist.

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

my $handle = undef;

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

open($handle, ">> $encoding", $filename)

|| die "$0: can’t open $filename for appending: $!";

Now you can write to that filehandle using any of "print", "printf", "say", "write", or "syswrite".

As noted above, if the file does not already exist, then the append-mode open will create it for you. But

if the file does already exist, its contents are safe from harm because you will be adding your new text

past the end of the old text.

On the other hand, sometimes you want to clobber whatever might already be there. To empty out a

file before you start writing to it, you can open it in write-only mode:

my $handle = undef;

my $filename = "/some/path/to/a/textfile/goes/here";

my $encoding = ":encoding(UTF-8)";

open($handle, "> $encoding", $filename)

|| die "$0: can’t open $filename in write-open mode: $!";

Here again Perl works just like the shell in that the ">" clobbers an existing file.

As with the append mode, when you open a file in write-only mode, you can now write to that

filehandle using any of "print", "printf", "say", "write", or "syswrite".

What about read-write mode? You should probably pretend it doesn’t exist, because opening text files

in read-write mode is unlikely to do what you would like. See perlfaq5 for details.

Opening Binary Files
If the file to be opened contains binary data instead of text characters, then the "MODE" argument to

"open" is a little different. Instead of specifying the encoding, you tell Perl that your data are in raw

bytes.

my $filename = "/some/path/to/a/binary/file/goes/here";

my $encoding = ":raw :bytes"

my $handle = undef; # this will be filled in on success

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

And then open as before, choosing "<", ">>", or ">" as needed:

open($handle, "< $encoding", $filename)

|| die "$0: can’t open $filename for reading: $!";

open($handle, ">> $encoding", $filename)

|| die "$0: can’t open $filename for appending: $!";

open($handle, "> $encoding", $filename)

|| die "$0: can’t open $filename in write-open mode: $!";

Alternately, you can change to binary mode on an existing handle this way:

binmode($handle) || die "cannot binmode handle";

This is especially handy for the handles that Perl has already opened for you.

binmode(STDIN) || die "cannot binmode STDIN";

binmode(STDOUT) || die "cannot binmode STDOUT";

You can also pass "binmode" an explicit encoding to change it on the fly. This isn’t exactly "binary"

mode, but we still use "binmode" to do it:

binmode(STDIN, ":encoding(MacRoman)") || die "cannot binmode STDIN";

binmode(STDOUT, ":encoding(UTF-8)") || die "cannot binmode STDOUT";

Once you have your binary file properly opened in the right mode, you can use all the same Perl I/O

functions as you used on text files. However, you may wish to use the fixed-size "read" instead of the

variable-sized "readline" for your input.

Here’s an example of how to copy a binary file:

my $BUFSIZ = 64 * (2 ** 10);

my $name_in = "/some/input/file";

my $name_out = "/some/output/flie";

my($in_fh, $out_fh, $buffer);

open($in_fh, "<", $name_in)

|| die "$0: cannot open $name_in for reading: $!";

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

open($out_fh, ">", $name_out)

|| die "$0: cannot open $name_out for writing: $!";

for my $fh ($in_fh, $out_fh) {

binmode($fh) || die "binmode failed";

}

while (read($in_fh, $buffer, $BUFSIZ)) {

unless (print $out_fh $buffer) {

die "couldn’t write to $name_out: $!";

}

}

close($in_fh) || die "couldn’t close $name_in: $!";

close($out_fh) || die "couldn’t close $name_out: $!";

Opening Pipes
Perl also lets you open a filehandle into an external program or shell command rather than into a file.

You can do this in order to pass data from your Perl program to an external command for further

processing, or to receive data from another program for your own Perl program to process.

Filehandles into commands are also known as pipes, since they work on similar inter-process

communication principles as Unix pipelines. Such a filehandle has an active program instead of a static

file on its external end, but in every other sense it works just like a more typical file-based filehandle,

with all the techniques discussed earlier in this article just as applicable.

As such, you open a pipe using the same "open" call that you use for opening files, setting the second

("MODE") argument to special characters that indicate either an input or an output pipe. Use "-|" for a

filehandle that will let your Perl program read data from an external program, and "|-" for a filehandle

that will send data to that program instead.

Opening a pipe for reading
Let’s say you’d like your Perl program to process data stored in a nearby directory called "unsorted",

which contains a number of textfiles. You’d also like your program to sort all the contents from these

files into a single, alphabetically sorted list of unique lines before it starts processing them.

You could do this through opening an ordinary filehandle into each of those files, gradually building up

an in-memory array of all the file contents you load this way, and finally sorting and filtering that array

when you’ve run out of files to load. Or, you could offload all that merging and sorting into your

operating system’s own "sort" command by opening a pipe directly into its output, and get to work that

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

much faster.

Here’s how that might look:

open(my $sort_fh, ’-|’, ’sort -u unsorted/*.txt’)

or die "Couldn’t open a pipe into sort: $!";

And right away, we can start reading sorted lines:

while (my $line = <$sort_fh>) {

#

... Do something interesting with each $line here ...

#

}

The second argument to "open", "-|", makes it a read-pipe into a separate program, rather than an

ordinary filehandle into a file.

Note that the third argument to "open" is a string containing the program name ("sort") plus all its

arguments: in this case, "-u" to specify unqiue sort, and then a fileglob specifying the files to sort. The

resulting filehandle $sort_fh works just like a read-only ("<") filehandle, and your program can

subsequently read data from it as if it were opened onto an ordinary, single file.

Opening a pipe for writing
Continuing the previous example, let’s say that your program has completed its processing, and the

results sit in an array called @processed. You want to print these lines to a file called "numbered.txt"

with a neatly formatted column of line-numbers.

Certainly you could write your own code to do this X or, once again, you could kick that work over to

another program. In this case, "cat", running with its own "-n" option to activate line numbering, should

do the trick:

open(my $cat_fh, ’|-’, ’cat -n > numbered.txt’)

or die "Couldn’t open a pipe into cat: $!";

for my $line (@processed) {

print $cat_fh $line;

}

Here, we use a second "open" argument of "|-", signifying that the filehandle assigned to $cat_fh

should be a write-pipe. We can then use it just as we would a write-only ordinary filehandle, including

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

the basic function of "print"-ing data to it.

Note that the third argument, specifying the command that we wish to pipe to, sets up "cat" to redirect

its output via that ">" symbol into the file "numbered.txt". This can start to look a little tricky, because

that same symbol would have meant something entirely different had it showed it in the second

argument to "open"! But here in the third argument, it’s simply part of the shell command that Perl

will open the pipe into, and Perl itself doesn’t invest any special meaning to it.

Expressing the command as a list
For opening pipes, Perl offers the option to call "open" with a list comprising the desired command and

all its own arguments as separate elements, rather than combining them into a single string as in the

examples above. For instance, we could have phrased the "open" call in the first example like this:

open(my $sort_fh, ’-|’, ’sort’, ’-u’, glob(’unsorted/*.txt’))

or die "Couldn’t open a pipe into sort: $!";

When you call "open" this way, Perl invokes the given command directly, bypassing the shell. As such,

the shell won’t try to interpret any special characters within the command’s argument list, which might

overwise have unwanted effects. This can make for safer, less error-prone "open" calls, useful in cases

such as passing in variables as arguments, or even just referring to filenames with spaces in them.

However, when you do want to pass a meaningful metacharacter to the shell, such with the "*" inside

that final "unsorted/*.txt" argument here, you can’t use this alternate syntax. In this case, we have

worked around it via Perl’s handy "glob" built-in function, which evaluates its argument into a list of

filenames X and we can safely pass that resulting list right into "open", as shown above.

Note also that representing piped-command arguments in list form like this doesn’t work on every

platform. It will work on any Unix-based OS that provides a real "fork" function (e.g. macOS or

Linux), as well as on Windows when running Perl 5.22 or later.

SEE ALSO
The full documentation for "open" provides a thorough reference to this function, beyond the best-

practice basics covered here.

AUTHOR and COPYRIGHT
Copyright 2013 Tom Christiansen; now maintained by Perl5 Porters

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

PERLOPENTUT(1) Perl Programmers Reference Guide PERLOPENTUT(1)

perl v5.34.3 2023-11-28 PERLOPENTUT(1)

