
NAME
perltrap - Perl traps for the unwary

DESCRIPTION
The biggest trap of all is forgetting to "use warnings" or use the -w switch; see warnings and "-w" in

perlrun. The second biggest trap is not making your entire program runnable under "use strict". The

third biggest trap is not reading the list of changes in this version of Perl; see perldelta.

Awk Traps
Accustomed awk users should take special note of the following:

+o A Perl program executes only once, not once for each input line. You can do an implicit loop with

"-n" or "-p".

+o The English module, loaded via

use English;

allows you to refer to special variables (like $/) with names (like $RS), as though they were in

awk; see perlvar for details.

+o Semicolons are required after all simple statements in Perl (except at the end of a block). Newline

is not a statement delimiter.

+o Curly brackets are required on "if"s and "while"s.

+o Variables begin with "$", "@" or "%" in Perl.

+o Arrays index from 0. Likewise string positions in substr() and index().

+o You have to decide whether your array has numeric or string indices.

+o Hash values do not spring into existence upon mere reference.

+o You have to decide whether you want to use string or numeric comparisons.

+o Reading an input line does not split it for you. You get to split it to an array yourself. And the

split() operator has different arguments than awk’s.

+o The current input line is normally in $_, not $0. It generally does not have the newline stripped.
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($0 is the name of the program executed.) See perlvar.

+o $<digit> does not refer to fields--it refers to substrings matched by the last match pattern.

+o The print() statement does not add field and record separators unless you set $, and "$\". You can

set $OFS and $ORS if you’re using the English module.

+o You must open your files before you print to them.

+o The range operator is "..", not comma. The comma operator works as in C.

+o The match operator is "=~", not "~". ("~" is the one’s complement operator, as in C.)

+o The exponentiation operator is "**", not "^". "^" is the XOR operator, as in C. (You know, one

could get the feeling that awk is basically incompatible with C.)

+o The concatenation operator is ".", not the null string. (Using the null string would render "/pat/

/pat/" unparsable, because the third slash would be interpreted as a division operator--the tokenizer

is in fact slightly context sensitive for operators like "/", "?", and ">". And in fact, "." itself can be

the beginning of a number.)

+o The "next", "exit", and "continue" keywords work differently.

+o The following variables work differently:

Awk Perl

ARGC scalar @ARGV (compare with $#ARGV)

ARGV[0] $0

FILENAME $ARGV

FNR $. - something

FS (whatever you like)

NF $#Fld, or some such

NR $.

OFMT $#

OFS $,

ORS $\

RLENGTH length($&)

RS $/

RSTART length($‘)

SUBSEP $;
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+o You cannot set $RS to a pattern, only a string.

+o When in doubt, run the awk construct through a2p and see what it gives you.

C/C
Traps
Cerebral C and

C

programmers should take note of the following:

+o Curly brackets are required on "if"’s and "while"’s.

+o You must use "elsif" rather than "else if".

+o The "break" and "continue" keywords from C become in Perl "last" and "next", respectively.

Unlike in C, these do not work within a "do { } while" construct. See "Loop Control" in perlsyn.

+o The switch statement is called "given"/"when" and only available in perl 5.10 or newer. See

"Switch Statements" in perlsyn.

+o Variables begin with "$", "@" or "%" in Perl.

+o Comments begin with "#", not "/*" or "//". Perl may interpret

C/C

comments as division operators, unterminated regular expressions or the defined-or operator.

+o You can’t take the address of anything, although a similar operator in Perl is the backslash, which

creates a reference.

+o "ARGV" must be capitalized. $ARGV[0] is C’s "argv[1]", and "argv[0]" ends up in $0.

+o System calls such as link(), unlink(), rename(), etc. return nonzero for success, not 0. (system(),
however, returns zero for success.)

+o Signal handlers deal with signal names, not numbers. Use "kill -l" to find their names on your

system.

JavaScript Traps
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Judicious JavaScript programmers should take note of the following:

+o In Perl, binary "+" is always addition. "$string1 + $string2" converts both strings to numbers and

then adds them. To concatenate two strings, use the "." operator.

+o The "+" unary operator doesn’t do anything in Perl. It exists to avoid syntactic ambiguities.

+o Unlike "for...in", Perl’s "for" (also spelled "foreach") does not allow the left-hand side to be an

arbitrary expression. It must be a variable:

for my $variable (keys %hash) {

...

}

Furthermore, don’t forget the "keys" in there, as "foreach my $kv (%hash) {}" iterates over the

keys and values, and is generally not useful ($kv would be a key, then a value, and so on).

+o To iterate over the indices of an array, use "foreach my $i (0 .. $#array) {}". "foreach my $v

(@array) {}" iterates over the values.

+o Perl requires braces following "if", "while", "foreach", etc.

+o In Perl, "else if" is spelled "elsif".

+o "? :" has higher precedence than assignment. In JavaScript, one can write:

condition ? do_something() : variable = 3

and the variable is only assigned if the condition is false. In Perl, you need parentheses:

$condition ? do_something() : ($variable = 3);

Or just use "if".

+o Perl requires semicolons to separate statements.

+o Variables declared with "my" only affect code after the declaration. You cannot write "$x = 1; my

$x;" and expect the first assignment to affect the same variable. It will instead assign to an $x

declared previously in an outer scope, or to a global variable.

PERLTRAP(1) Perl Programmers Reference Guide PERLTRAP(1)

perl v5.34.3 2023-11-28 PERLTRAP(1)



Note also that the variable is not visible until the following statement. This means that in "my $x

= 1 + $x" the second $x refers to one declared previously.

+o "my" variables are scoped to the current block, not to the current function. If you write "{my $x;}

$x;", the second $x does not refer to the one declared inside the block.

+o An object’s members cannot be made accessible as variables. The closest Perl equivalent to

"with(object) { method() }" is "for", which can alias $_ to the object:

for ($object) {

$_->method;

}

+o The object or class on which a method is called is passed as one of the method’s arguments, not as

a separate "this" value.

Sed Traps
Seasoned sed programmers should take note of the following:

+o A Perl program executes only once, not once for each input line. You can do an implicit loop with

"-n" or "-p".

+o Backreferences in substitutions use "$" rather than "\".

+o The pattern matching metacharacters "(", ")", and "|" do not have backslashes in front.

+o The range operator is "...", rather than comma.

Shell Traps
Sharp shell programmers should take note of the following:

+o The backtick operator does variable interpolation without regard to the presence of single quotes

in the command.

+o The backtick operator does no translation of the return value, unlike csh.

+o Shells (especially csh) do several levels of substitution on each command line. Perl does

substitution in only certain constructs such as double quotes, backticks, angle brackets, and search

patterns.
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+o Shells interpret scripts a little bit at a time. Perl compiles the entire program before executing it

(except for "BEGIN" blocks, which execute at compile time).

+o The arguments are available via @ARGV, not $1, $2, etc.

+o The environment is not automatically made available as separate scalar variables.

+o The shell’s "test" uses "=", "!=", "<" etc for string comparisons and "-eq", "-ne", "-lt" etc for

numeric comparisons. This is the reverse of Perl, which uses "eq", "ne", "lt" for string

comparisons, and "==", "!=" "<" etc for numeric comparisons.

Perl Traps
Practicing Perl Programmers should take note of the following:

+o Remember that many operations behave differently in a list context than they do in a scalar one.

See perldata for details.

+o Avoid barewords if you can, especially all lowercase ones. You can’t tell by just looking at it

whether a bareword is a function or a string. By using quotes on strings and parentheses on

function calls, you won’t ever get them confused.

+o You cannot discern from mere inspection which builtins are unary operators (like chop() and

chdir()) and which are list operators (like print() and unlink()). (Unless prototyped, user-defined

subroutines can only be list operators, never unary ones.) See perlop and perlsub.

+o People have a hard time remembering that some functions default to $_, or @ARGV, or whatever,

but that others which you might expect to do not.

+o The <FH> construct is not the name of the filehandle, it is a readline operation on that handle.

The data read is assigned to $_ only if the file read is the sole condition in a while loop:

while (<FH>) { }

while (defined($_ = <FH>)) { }..

<FH>; # data discarded!

+o Remember not to use "=" when you need "=~"; these two constructs are quite different:

$x = /foo/;

$x =~ /foo/;
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+o The "do {}" construct isn’t a real loop that you can use loop control on.

+o Use "my()" for local variables whenever you can get away with it (but see perlform for where you

can’t). Using "local()" actually gives a local value to a global variable, which leaves you open to

unforeseen side-effects of dynamic scoping.

+o If you localize an exported variable in a module, its exported value will not change. The local

name becomes an alias to a new value but the external name is still an alias for the original.

As always, if any of these are ever officially declared as bugs, they’ll be fixed and removed.
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