
NAME
perlxstypemap - Perl XS C/Perl type mapping

DESCRIPTION
The more you think about interfacing between two languages, the more you’ll realize that the majority

of programmer effort has to go into converting between the data structures that are native to either of

the languages involved. This trumps other matter such as differing calling conventions because the

problem space is so much greater. There are simply more ways to shove data into memory than there

are ways to implement a function call.

Perl XS’ attempt at a solution to this is the concept of typemaps. At an abstract level, a Perl XS

typemap is nothing but a recipe for converting from a certain Perl data structure to a certain C data

structure and vice versa. Since there can be C types that are sufficiently similar to one another to

warrant converting with the same logic, XS typemaps are represented by a unique identifier, henceforth

called an XS type in this document. You can then tell the XS compiler that multiple C types are to be

mapped with the same XS typemap.

In your XS code, when you define an argument with a C type or when you are using a "CODE:" and an

"OUTPUT:" section together with a C return type of your XSUB, it’ll be the typemapping mechanism

that makes this easy.

Anatomy of a typemap
In more practical terms, the typemap is a collection of code fragments which are used by the xsubpp
compiler to map C function parameters and values to Perl values. The typemap file may consist of

three sections labelled "TYPEMAP", "INPUT", and "OUTPUT". An unlabelled initial section is

assumed to be a "TYPEMAP" section. The INPUT section tells the compiler how to translate Perl

values into variables of certain C types. The OUTPUT section tells the compiler how to translate the

values from certain C types into values Perl can understand. The TYPEMAP section tells the compiler

which of the INPUT and OUTPUT code fragments should be used to map a given C type to a Perl

value. The section labels "TYPEMAP", "INPUT", or "OUTPUT" must begin in the first column on a

line by themselves, and must be in uppercase.

Each type of section can appear an arbitrary number of times and does not have to appear at all. For

example, a typemap may commonly lack "INPUT" and "OUTPUT" sections if all it needs to do is

associate additional C types with core XS types like T_PTROBJ. Lines that start with a hash "#" are

considered comments and ignored in the "TYPEMAP" section, but are considered significant in

"INPUT" and "OUTPUT". Blank lines are generally ignored.

Traditionally, typemaps needed to be written to a separate file, conventionally called "typemap" in a

CPAN distribution. With ExtUtils::ParseXS (the XS compiler) version 3.12 or better which comes

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

with perl 5.16, typemaps can also be embedded directly into XS code using a HERE-doc like syntax:

TYPEMAP: <<HERE

...

HERE

where "HERE" can be replaced by other identifiers like with normal Perl HERE-docs. All details

below about the typemap textual format remain valid.

The "TYPEMAP" section should contain one pair of C type and XS type per line as follows. An

example from the core typemap file:

TYPEMAP

all variants of char* is handled by the T_PV typemap

char * T_PV

const char * T_PV

unsigned char * T_PV

...

The "INPUT" and "OUTPUT" sections have identical formats, that is, each unindented line starts a new

in- or output map respectively. A new in- or output map must start with the name of the XS type to

map on a line by itself, followed by the code that implements it indented on the following lines.

Example:

INPUT

T_PV

$var = ($type)SvPV_nolen($arg)

T_PTR

$var = INT2PTR($type,SvIV($arg))

We’ll get to the meaning of those Perlish-looking variables in a little bit.

Finally, here’s an example of the full typemap file for mapping C strings of the "char *" type to Perl

scalars/strings:

TYPEMAP

char * T_PV

INPUT

T_PV

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

$var = ($type)SvPV_nolen($arg)

OUTPUT

T_PV

sv_setpv((SV*)$arg, $var);

Here’s a more complicated example: suppose that you wanted "struct netconfig" to be blessed into the

class "Net::Config". One way to do this is to use underscores (_) to separate package names, as

follows:

typedef struct netconfig * Net_Config;

And then provide a typemap entry "T_PTROBJ_SPECIAL" that maps underscores to double-colons

(::), and declare "Net_Config" to be of that type:

TYPEMAP

Net_Config T_PTROBJ_SPECIAL

INPUT

T_PTROBJ_SPECIAL

if (sv_derived_from($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\")){

IV tmp = SvIV((SV*)SvRV($arg));

$var = INT2PTR($type, tmp);

}

else

croak(\"$var is not of type ${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\")

OUTPUT

T_PTROBJ_SPECIAL

sv_setref_pv($arg, \"${(my $ntt=$ntype)=~s/_/::/g;\$ntt}\",

(void*)$var);

The INPUT and OUTPUT sections substitute underscores for double-colons on the fly, giving the

desired effect. This example demonstrates some of the power and versatility of the typemap facility.

The "INT2PTR" macro (defined in perl.h) casts an integer to a pointer of a given type, taking care of

the possible different size of integers and pointers. There are also "PTR2IV", "PTR2UV", "PTR2NV"

macros, to map the other way, which may be useful in OUTPUT sections.

The Role of the typemap File in Your Distribution

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

The default typemap in the lib/ExtUtils directory of the Perl source contains many useful types which

can be used by Perl extensions. Some extensions define additional typemaps which they keep in their

own directory. These additional typemaps may reference INPUT and OUTPUT maps in the main

typemap. The xsubpp compiler will allow the extension’s own typemap to override any mappings

which are in the default typemap. Instead of using an additional typemap file, typemaps may be

embedded verbatim in XS with a heredoc-like syntax. See the documentation on the "TYPEMAP:" XS

keyword.

For CPAN distributions, you can assume that the XS types defined by the perl core are already

available. Additionally, the core typemap has default XS types for a large number of C types. For

example, if you simply return a "char *" from your XSUB, the core typemap will have this C type

associated with the T_PV XS type. That means your C string will be copied into the PV (pointer

value) slot of a new scalar that will be returned from your XSUB to Perl.

If you’re developing a CPAN distribution using XS, you may add your own file called typemap to the

distribution. That file may contain typemaps that either map types that are specific to your code or that

override the core typemap file’s mappings for common C types.

Sharing typemaps Between CPAN Distributions
Starting with ExtUtils::ParseXS version 3.13_01 (comes with perl 5.16 and better), it is rather easy to

share typemap code between multiple CPAN distributions. The general idea is to share it as a module

that offers a certain API and have the dependent modules declare that as a built-time requirement and

import the typemap into the XS. An example of such a typemap-sharing module on CPAN is

"ExtUtils::Typemaps::Basic". Two steps to getting that module’s typemaps available in your code:

+o Declare "ExtUtils::Typemaps::Basic" as a build-time dependency in "Makefile.PL" (use

"BUILD_REQUIRES"), or in your "Build.PL" (use "build_requires").

+o Include the following line in the XS section of your XS file: (don’t break the line)

INCLUDE_COMMAND: $^X -MExtUtils::Typemaps::Cmd

-e "print embeddable_typemap(q{Basic})"

Writing typemap Entries
Each INPUT or OUTPUT typemap entry is a double-quoted Perl string that will be evaluated in the

presence of certain variables to get the final C code for mapping a certain C type.

This means that you can embed Perl code in your typemap (C) code using constructs such as "${ perl

code that evaluates to scalar reference here }". A common use case is to generate error messages that

refer to the true function name even when using the ALIAS XS feature:

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

${ $ALIAS ? \q[GvNAME(CvGV(cv))] : \qq[\"$pname\"] }

For many typemap examples, refer to the core typemap file that can be found in the perl source tree at

lib/ExtUtils/typemap.

The Perl variables that are available for interpolation into typemaps are the following:

+o $var - the name of the input or output variable, eg. RETVAL for return values.

+o $type - the raw C type of the parameter, any ":" replaced with "_". e.g. for a type of "Foo::Bar",

$type is "Foo__Bar"

+o $ntype - the supplied type with "*" replaced with "Ptr". e.g. for a type of "Foo*", $ntype is

"FooPtr"

+o $arg - the stack entry, that the parameter is input from or output to, e.g. ST(0)

+o $argoff - the argument stack offset of the argument. ie. 0 for the first argument, etc.

+o $pname - the full name of the XSUB, with including the "PACKAGE" name, with any "PREFIX"

stripped. This is the non-ALIAS name.

+o $Package - the package specified by the most recent "PACKAGE" keyword.

+o $ALIAS - non-zero if the current XSUB has any aliases declared with "ALIAS".

Full Listing of Core Typemaps
Each C type is represented by an entry in the typemap file that is responsible for converting perl

variables (SV, AV, HV, CV, etc.) to and from that type. The following sections list all XS types that

come with perl by default.

T_SV

This simply passes the C representation of the Perl variable (an SV*) in and out of the XS layer.

This can be used if the C code wants to deal directly with the Perl variable.

T_SVREF

Used to pass in and return a reference to an SV.

Note that this typemap does not decrement the reference count when returning the reference to an

SV*. See also: T_SVREF_REFCOUNT_FIXED

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

T_SVREF_FIXED

Used to pass in and return a reference to an SV. This is a fixed variant of T_SVREF that

decrements the refcount appropriately when returning a reference to an SV*. Introduced in perl

5.15.4.

T_AVREF

From the perl level this is a reference to a perl array. From the C level this is a pointer to an AV.

Note that this typemap does not decrement the reference count when returning an AV*. See also:

T_AVREF_REFCOUNT_FIXED

T_AVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl array. From the C level this is a pointer to an AV.

This is a fixed variant of T_AVREF that decrements the refcount appropriately when returning an

AV*. Introduced in perl 5.15.4.

T_HVREF

From the perl level this is a reference to a perl hash. From the C level this is a pointer to an HV.

Note that this typemap does not decrement the reference count when returning an HV*. See also:

T_HVREF_REFCOUNT_FIXED

T_HVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl hash. From the C level this is a pointer to an HV.

This is a fixed variant of T_HVREF that decrements the refcount appropriately when returning an

HV*. Introduced in perl 5.15.4.

T_CVREF

From the perl level this is a reference to a perl subroutine (e.g. $sub = sub { 1 };). From the C

level this is a pointer to a CV.

Note that this typemap does not decrement the reference count when returning an HV*. See also:

T_HVREF_REFCOUNT_FIXED

T_CVREF_REFCOUNT_FIXED

From the perl level this is a reference to a perl subroutine (e.g. $sub = sub { 1 };). From the C

level this is a pointer to a CV.

This is a fixed variant of T_HVREF that decrements the refcount appropriately when returning an

HV*. Introduced in perl 5.15.4.

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

T_SYSRET

The T_SYSRET typemap is used to process return values from system calls. It is only meaningful

when passing values from C to perl (there is no concept of passing a system return value from Perl

to C).

System calls return -1 on error (setting ERRNO with the reason) and (usually) 0 on success. If the

return value is -1 this typemap returns "undef". If the return value is not -1, this typemap translates

a 0 (perl false) to "0 but true" (which is perl true) or returns the value itself, to indicate that the

command succeeded.

The POSIX module makes extensive use of this type.

T_UV

An unsigned integer.

T_IV

A signed integer. This is cast to the required integer type when passed to C and converted to an IV

when passed back to Perl.

T_INT

A signed integer. This typemap converts the Perl value to a native integer type (the "int" type on

the current platform). When returning the value to perl it is processed in the same way as for

T_IV.

Its behaviour is identical to using an "int" type in XS with T_IV.

T_ENUM

An enum value. Used to transfer an enum component from C. There is no reason to pass an enum

value to C since it is stored as an IV inside perl.

T_BOOL

A boolean type. This can be used to pass true and false values to and from C.

T_U_INT

This is for unsigned integers. It is equivalent to using T_UV but explicitly casts the variable to

type "unsigned int". The default type for "unsigned int" is T_UV.

T_SHORT

Short integers. This is equivalent to T_IV but explicitly casts the return to type "short". The

default typemap for "short" is T_IV.

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

T_U_SHORT

Unsigned short integers. This is equivalent to T_UV but explicitly casts the return to type

"unsigned short". The default typemap for "unsigned short" is T_UV.

T_U_SHORT is used for type "U16" in the standard typemap.

T_LONG

Long integers. This is equivalent to T_IV but explicitly casts the return to type "long". The default

typemap for "long" is T_IV.

T_U_LONG

Unsigned long integers. This is equivalent to T_UV but explicitly casts the return to type

"unsigned long". The default typemap for "unsigned long" is T_UV.

T_U_LONG is used for type "U32" in the standard typemap.

T_CHAR

Single 8-bit characters.

T_U_CHAR

An unsigned byte.

T_FLOAT

A floating point number. This typemap guarantees to return a variable cast to a "float".

T_NV

A Perl floating point number. Similar to T_IV and T_UV in that the return type is cast to the

requested numeric type rather than to a specific type.

T_DOUBLE

A double precision floating point number. This typemap guarantees to return a variable cast to a

"double".

T_PV

A string (char *).

T_PTR

A memory address (pointer). Typically associated with a "void *" type.

T_PTRREF

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

Similar to T_PTR except that the pointer is stored in a scalar and the reference to that scalar is

returned to the caller. This can be used to hide the actual pointer value from the programmer since

it is usually not required directly from within perl.

The typemap checks that a scalar reference is passed from perl to XS.

T_PTROBJ

Similar to T_PTRREF except that the reference is blessed into a class. This allows the pointer to

be used as an object. Most commonly used to deal with C structs. The typemap checks that the

perl object passed into the XS routine is of the correct class (or part of a subclass).

The pointer is blessed into a class that is derived from the name of type of the pointer but with all

’*’ in the name replaced with ’Ptr’.

For "DESTROY" XSUBs only, a T_PTROBJ is optimized to a T_PTRREF. This means the class

check is skipped.

T_REF_IV_REF

NOT YET

T_REF_IV_PTR

Similar to T_PTROBJ in that the pointer is blessed into a scalar object. The difference is that

when the object is passed back into XS it must be of the correct type (inheritance is not supported)

while T_PTROBJ supports inheritance.

The pointer is blessed into a class that is derived from the name of type of the pointer but with all

’*’ in the name replaced with ’Ptr’.

For "DESTROY" XSUBs only, a T_REF_IV_PTR is optimized to a T_PTRREF. This means the

class check is skipped.

T_PTRDESC

NOT YET

T_REFREF

Similar to T_PTRREF, except the pointer stored in the referenced scalar is dereferenced and

copied to the output variable. This means that T_REFREF is to T_PTRREF as T_OPAQUE is to

T_OPAQUEPTR. All clear?

Only the INPUT part of this is implemented (Perl to XSUB) and there are no known users in core

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

or on CPAN.

T_REFOBJ

Like T_REFREF, except it does strict type checking (inheritance is not supported).

For "DESTROY" XSUBs only, a T_REFOBJ is optimized to a T_REFREF. This means the class

check is skipped.

T_OPAQUEPTR

This can be used to store bytes in the string component of the SV. Here the representation of the

data is irrelevant to perl and the bytes themselves are just stored in the SV. It is assumed that the C

variable is a pointer (the bytes are copied from that memory location). If the pointer is pointing to

something that is represented by 8 bytes then those 8 bytes are stored in the SV (and length() will

report a value of 8). This entry is similar to T_OPAQUE.

In principle the unpack() command can be used to convert the bytes back to a number (if the

underlying type is known to be a number).

This entry can be used to store a C structure (the number of bytes to be copied is calculated using

the C "sizeof" function) and can be used as an alternative to T_PTRREF without having to worry

about a memory leak (since Perl will clean up the SV).

T_OPAQUE

This can be used to store data from non-pointer types in the string part of an SV. It is similar to

T_OPAQUEPTR except that the typemap retrieves the pointer directly rather than assuming it is

being supplied. For example, if an integer is imported into Perl using T_OPAQUE rather than

T_IV the underlying bytes representing the integer will be stored in the SV but the actual integer

value will not be available. i.e. The data is opaque to perl.

The data may be retrieved using the "unpack" function if the underlying type of the byte stream is

known.

T_OPAQUE supports input and output of simple types. T_OPAQUEPTR can be used to pass

these bytes back into C if a pointer is acceptable.

Implicit array

xsubpp supports a special syntax for returning packed C arrays to perl. If the XS return type is

given as

array(type, nelem)

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

xsubpp will copy the contents of "nelem * sizeof(type)" bytes from RETVAL to an SV and push it

onto the stack. This is only really useful if the number of items to be returned is known at compile

time and you don’t mind having a string of bytes in your SV. Use T_ARRAY to push a variable

number of arguments onto the return stack (they won’t be packed as a single string though).

This is similar to using T_OPAQUEPTR but can be used to process more than one element.

T_PACKED

Calls user-supplied functions for conversion. For "OUTPUT" (XSUB to Perl), a function named

"XS_pack_$ntype" is called with the output Perl scalar and the C variable to convert from. $ntype

is the normalized C type that is to be mapped to Perl. Normalized means that all "*" are replaced

by the string "Ptr". The return value of the function is ignored.

Conversely for "INPUT" (Perl to XSUB) mapping, the function named "XS_unpack_$ntype" is

called with the input Perl scalar as argument and the return value is cast to the mapped C type and

assigned to the output C variable.

An example conversion function for a typemapped struct "foo_t *" might be:

static void

XS_pack_foo_tPtr(SV *out, foo_t *in)

{

dTHX; /* alas, signature does not include pTHX_ */

HV* hash = newHV();

hv_stores(hash, "int_member", newSViv(in->int_member));

hv_stores(hash, "float_member", newSVnv(in->float_member));

/* ... */

/* mortalize as thy stack is not refcounted */

sv_setsv(out, sv_2mortal(newRV_noinc((SV*)hash)));

}

The conversion from Perl to C is left as an exercise to the reader, but the prototype would be:

static foo_t *

XS_unpack_foo_tPtr(SV *in);

Instead of an actual C function that has to fetch the thread context using "dTHX", you can define

macros of the same name and avoid the overhead. Also, keep in mind to possibly free the memory

allocated by "XS_unpack_foo_tPtr".

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

T_PACKEDARRAY

T_PACKEDARRAY is similar to T_PACKED. In fact, the "INPUT" (Perl to XSUB) typemap is

identical, but the "OUTPUT" typemap passes an additional argument to the "XS_pack_$ntype"

function. This third parameter indicates the number of elements in the output so that the function

can handle C arrays sanely. The variable needs to be declared by the user and must have the name

"count_$ntype" where $ntype is the normalized C type name as explained above. The signature of

the function would be for the example above and "foo_t **":

static void

XS_pack_foo_tPtrPtr(SV *out, foo_t *in, UV count_foo_tPtrPtr);

The type of the third parameter is arbitrary as far as the typemap is concerned. It just has to be in

line with the declared variable.

Of course, unless you know the number of elements in the "sometype **" C array, within your

XSUB, the return value from "foo_t ** XS_unpack_foo_tPtrPtr(...)" will be hard to decipher.

Since the details are all up to the XS author (the typemap user), there are several solutions, none

of which particularly elegant. The most commonly seen solution has been to allocate memory for

N+1 pointers and assign "NULL" to the (N+1)th to facilitate iteration.

Alternatively, using a customized typemap for your purposes in the first place is probably

preferable.

T_DATAUNIT

NOT YET

T_CALLBACK

NOT YET

T_ARRAY

This is used to convert the perl argument list to a C array and for pushing the contents of a C array

onto the perl argument stack.

The usual calling signature is

@out = array_func(@in);

Any number of arguments can occur in the list before the array but the input and output arrays

must be the last elements in the list.

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

When used to pass a perl list to C the XS writer must provide a function (named after the array

type but with ’Ptr’ substituted for ’*’) to allocate the memory required to hold the list. A pointer

should be returned. It is up to the XS writer to free the memory on exit from the function. The

variable "ix_$var" is set to the number of elements in the new array.

When returning a C array to Perl the XS writer must provide an integer variable called "size_$var"

containing the number of elements in the array. This is used to determine how many elements

should be pushed onto the return argument stack. This is not required on input since Perl knows

how many arguments are on the stack when the routine is called. Ordinarily this variable would be

called "size_RETVAL".

Additionally, the type of each element is determined from the type of the array. If the array uses

type "intArray *" xsubpp will automatically work out that it contains variables of type "int" and

use that typemap entry to perform the copy of each element. All pointer ’*’ and ’Array’ tags are

removed from the name to determine the subtype.

T_STDIO

This is used for passing perl filehandles to and from C using "FILE *" structures.

T_INOUT

This is used for passing perl filehandles to and from C using "PerlIO *" structures. The file handle

can used for reading and writing. This corresponds to the "+<" mode, see also T_IN and T_OUT.

See perliol for more information on the Perl IO abstraction layer. Perl must have been built with

"-Duseperlio".

There is no check to assert that the filehandle passed from Perl to C was created with the right

"open()" mode.

Hint: The perlxstut tutorial covers the T_INOUT, T_IN, and T_OUT XS types nicely.

T_IN

Same as T_INOUT, but the filehandle that is returned from C to Perl can only be used for reading

(mode "<").

T_OUT

Same as T_INOUT, but the filehandle that is returned from C to Perl is set to use the open mode

"+>".

PERLXSTYPEMAP(1) Perl Programmers Reference Guide PERLXSTYPEMAP(1)

perl v5.34.3 2023-11-28 PERLXSTYPEMAP(1)

