
NAME
poll - synchronous I/O multiplexing

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <poll.h>

int

poll(struct pollfd fds[], nfds_t nfds, int timeout);

int

ppoll(struct pollfd fds[], nfds_t nfds, const struct timespec * restrict timeout,

const sigset_t * restrict newsigmask);

DESCRIPTION
The poll() system call examines a set of file descriptors to see if some of them are ready for I/O. The

fds argument is a pointer to an array of pollfd structures as defined in <poll.h> (shown below). The nfds

argument determines the size of the fds array.

struct pollfd {

int fd; /* file descriptor */

short events; /* events to look for */

short revents; /* events returned */

};

The fields of struct pollfd are as follows:

fd File descriptor to poll. If fd is equal to -1 then revents is cleared (set to zero), and that

pollfd is not checked.

events Events to poll for. (See below.)

revents Events which may occur. (See below.)

The event bitmasks in events and revents have the following bits:

POLLIN Data other than high priority data may be read without blocking.

POLL(2) FreeBSD System Calls Manual POLL(2)

FreeBSD 14.0-RELEASE-p11 April 27, 2021 FreeBSD 14.0-RELEASE-p11



POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Data with a non-zero priority may be read without blocking.

POLLPRI High priority data may be read without blocking.

POLLOUT

POLLWRNORM Normal data may be written without blocking.

POLLWRBAND Data with a non-zero priority may be written without blocking.

POLLERR An exceptional condition has occurred on the device or socket. This flag is

always checked, even if not present in the events bitmask.

POLLHUP The device or socket has been disconnected. This flag is always checked, even

if not present in the events bitmask. Note that POLLHUP and POLLOUT

should never be present in the revents bitmask at the same time.

POLLRDHUP Remote peer closed connection, or shut down writing. Unlike POLLHUP,

POLLRDHUP must be present in the events bitmask to be reported. Applies

only to stream sockets.

POLLNVAL The file descriptor is not open, or in capability mode the file descriptor has

insufficient rights. This flag is always checked, even if not present in the events

bitmask.

If timeout is neither zero nor INFTIM (-1), it specifies a maximum interval to wait for any file descriptor

to become ready, in milliseconds. If timeout is INFTIM (-1), the poll blocks indefinitely. If timeout is

zero, then poll() will return without blocking.

The ppoll() system call, unlike poll(), is used to safely wait until either a set of file descriptors becomes

ready or until a signal is caught. The fds and nfds arguments are identical to the analogous arguments of

poll(). The timeout argument in ppoll() points to a const struct timespec which is defined in

<sys/timespec.h> (shown below) rather than the int timeout used by poll(). A null pointer may be

passed to indicate that ppoll() should wait indefinitely. Finally, newsigmask specifies a signal mask

which is set while waiting for input. When ppoll() returns, the original signal mask is restored.

struct timespec {

time_t tv_sec; /* seconds */

POLL(2) FreeBSD System Calls Manual POLL(2)

FreeBSD 14.0-RELEASE-p11 April 27, 2021 FreeBSD 14.0-RELEASE-p11



long tv_nsec; /* and nanoseconds */

};

RETURN VALUES
The poll() system call returns the number of descriptors that are ready for I/O, or -1 if an error occurred.

If the time limit expires, poll() returns 0. If poll() returns with an error, including one due to an

interrupted system call, the fds array will be unmodified.

COMPATIBILITY
This implementation differs from the historical one in that a given file descriptor may not cause poll() to

return with an error. In cases where this would have happened in the historical implementation (e.g.

trying to poll a revoke(2)ed descriptor), this implementation instead copies the events bitmask to the

revents bitmask. Attempting to perform I/O on this descriptor will then return an error. This behaviour

is believed to be more useful.

ERRORS
An error return from poll() indicates:

[EFAULT] The fds argument points outside the process’s allocated address space.

[EINTR] A signal was delivered before the time limit expired and before any of the

selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is negative or too large.

[EINVAL] The number of pollfd structures specified by nfds exceeds the system tunable

kern.maxfilesperproc and FD_SETSIZE.

SEE ALSO
accept(2), connect(2), kqueue(2), pselect(2), read(2), recv(2), select(2), send(2), write(2)

STANDARDS
The poll() function conforms to IEEE Std 1003.1-2001 ("POSIX.1"). The ppoll() is not specified by

POSIX. The POLLRDHUP flag is not specified by POSIX, but is compatible with Linux and illumos.

HISTORY
The poll() function appeared in AT&T System V UNIX. This manual page and the core of the

implementation was taken from NetBSD. The ppoll() function first appeared in FreeBSD 11.0

BUGS

POLL(2) FreeBSD System Calls Manual POLL(2)

FreeBSD 14.0-RELEASE-p11 April 27, 2021 FreeBSD 14.0-RELEASE-p11



The distinction between some of the fields in the events and revents bitmasks is really not useful without

STREAMS. The fields are defined for compatibility with existing software.

POLL(2) FreeBSD System Calls Manual POLL(2)

FreeBSD 14.0-RELEASE-p11 April 27, 2021 FreeBSD 14.0-RELEASE-p11


