
NAME
qmath - fixed-point math library based on the "Q" number format

SYNOPSIS
#include <sys/qmath.h>

DESCRIPTION
The qmath data types and APIs support fixed-point math based on the "Q" number format. The APIs

have been built around the following data types: s8q_t, u8q_t, s16q_t, u16q_t, s32q_t, u32q_t, s64q_t,

and u64q_t, which are referred to generically in the earlier API definitions as QTYPE. The ITYPE

refers to the stdint(7) integer types. NTYPE is used to refer to any numeric type and is therefore a

superset of QTYPE and ITYPE.

This scheme can represent Q numbers with [2, 4, 6, 8, 16, 32, 48] bits of precision after the binary radix

point, depending on the rpshft argument to Q_INI(). The number of bits available for the integral

component is not explicitly specified, and implicitly consumes the remaining available bits of the chosen

Q data type.

Operations on Q numbers maintain the precision of their arguments. The fractional component is

truncated to fit into the destination, with no rounding. None of the operations is affected by the floating-

point environment.

For more details, see the IMPLEMENTATION DETAILS below.

LIST OF FUNCTIONS
Functions which create/initialise a Q number
Name Description

Q_INI(3) initialise a Q number

Numeric functions which operate on two Q numbers
Name Description

Q_QADDQ(3) addition

Q_QDIVQ(3) division

Q_QMULQ(3) multiplication

Q_QSUBQ(3) subtraction

Q_NORMPREC(3)

normalisation

Q_QMAXQ(3) maximum function

Q_QMINQ(3) minimum function

Q_QCLONEQ(3)

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



identical copy

Q_QCPYVALQ(3)

representational copy

Numeric functions which apply integers to a Q number
Name Description

Q_QADDI(3) addition

Q_QDIVI(3) division

Q_QMULI(3) multiplication

Q_QSUBI(3) subtraction

Q_QFRACI(3) fraction

Q_QCPYVALI(3)

overwrite

Numeric functions which operate on a single Q number
Name Description

Q_QABS(3) absolute value

Q_Q2D(3) double representation

Q_Q2F(3) float representation

Comparison and logic functions
Name Description

Q_SIGNED(3) determine sign

Q_LTZ(3) less than zero

Q_PRECEQ(3) compare bits

Q_QLTQ(3) less than

Q_QLEQ(3) less or equal

Q_QGTQ(3) greater than

Q_QGEQ(3) greater or equal

Q_QEQ(3) equal

Q_QNEQ(3) not equal

Q_OFLOW(3) would overflow

Q_RELPREC(3)

relative precision

Functions which manipulate the control/sign data bits
Name Description

Q_SIGNSHFT(3)

sign bit position

Q_SSIGN(3) sign bit

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



Q_CRAWMASK(3)

control bitmask

Q_SRAWMASK(3)

sign bitmask

Q_GCRAW(3) raw control bits

Q_GCVAL(3) value of control bits

Q_SCVAL(3) set control bits

Functions which manipulate the combined integer/fractional data bits
Name Description

Q_IFRAWMASK(3)

integer/fractional bitmask

Q_IFVALIMASK(3)

value of integer bits

Q_IFVALFMASK(3)

value of fractional bits

Q_GIFRAW(3) raw integer/fractional bits

Q_GIFABSVAL(3)

absolute value of fractional bits

Q_GIFVAL(3) real value of fractional bits

Q_SIFVAL(3) set integer/fractional bits

Q_SIFVALS(3)

set separate integer/fractional values

Functions which manipulate the integer data bits
Name Description

Q_IRAWMASK(3)

integer bitmask

Q_GIRAW(3) raw integer bits

Q_GIABSVAL(3)

absolute value of integer bits

Q_GIVAL(3) real value of integer bits

Q_SIVAL(3) set integer bits

Functions which manipulate the fractional data bits
Name Description

Q_FRAWMASK(3)

fractional bitmask

Q_GFRAW(3) raw fractional bits

Q_GFABSVAL(3)

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



absolute value of fractional bits

Q_GFVAL(3) real value of fractional bits

Q_SFVAL(3) set fractional bits

Miscellaneous functions/variables
Name Description

Q_NCBITS(3) number of reserved control bits

Q_BT(3) C data type

Q_TC(3) casted data type

Q_NTBITS(3) number of total bits

Q_NFCBITS(3)

number of control-encoded fractional bits

Q_MAXNFBITS(3)

number of maximum fractional bits

Q_NFBITS(3) number of effective fractional bits

Q_NIBITS(3) number of integer bits

Q_RPSHFT(3) bit position of radix point

Q_ABS(3) absolute value

Q_MAXSTRLEN(3)

number of characters to render string

Q_TOSTR(3) render string

Q_SHL(3) left-shifted value

Q_SHR(3) right-shifted value

Q_DEBUG(3) render debugging information

Q_DFV2BFV(3)

convert decimal fractional value

IMPLEMENTATION DETAILS
The qmath data types and APIs support fixed-point math based on the "Q" number format. This

implementation uses the Q notation Qm.n, where m specifies the number of bits for integral data

(excluding the sign bit for signed types), and n specifies the number of bits for fractional data.

The APIs have been built around the following q_t derived data types:

typedef int8_t s8q_t;

typedef uint8_t u8q_t;

typedef int16_t s16q_t;

typedef uint16_t u16q_t;

typedef int32_t s32q_t;

typedef uint32_t u32q_t;

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



typedef int64_t s64q_t;

typedef uint64_t u64q_t;

These types are referred to generically in the earlier API definitions as QTYPE, while ITYPE refers to

the stdint(7) integer types the Q data types are derived from. NTYPE is used to refer to any numeric

type and is therefore a superset of QTYPE and ITYPE.

The 3 least significant bits (LSBs) of all q_t data types are reserved for embedded control data:

- bits 1-2 specify the binary radix point shift index operand, with 00,01,10,11 == 1,2,3,4.

- bit 3 specifies the radix point shift index operand multiplier as 2 (0) or 16 (1).

This scheme can therefore represent Q numbers with [2,4,6,8,16,32,48,64] bits of precision after the

binary radix point. The number of bits available for the integral component is not explicitly specified,

and implicitly consumes the remaining available bits of the chosen Q data type.

Additionally, the most significant bit (MSB) of signed Q types stores the sign bit, with bit value 0

representing a positive number and bit value 1 representing a negative number. Negative numbers are

stored as absolute values with the sign bit set, rather than the more typical two’s complement

representation. This avoids having to bit shift negative numbers, which can result in undefined

behaviour from some compilers.

This binary representation used for Q numbers therefore comprises a set of distinct data bit types and

associated bit counts. Data bit types/labels, listed in LSB to MSB order, are: control ‘C’, fractional ‘F’,

integer ‘I’ and sign ‘S’. The following example illustrates the binary representation of a Q20.8 number

represented using a s32q_t variable:

M L

S S

B B

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

S I I I I I I I I I I I I I I I I I I I I F F F F F F F F C C C

Important bit counts are: total, control, control-encoded fractional, maximum fractional, effective

fractional and integer bits.

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



The count of total bits is derived from the size of the q_t data type. For example, a s32q_t has 32 total

bits.

The count of control-encoded fractional bits is derived from calculating the number of fractional bits per

the control bit encoding scheme. For example, the control bits binary value of 101 encodes a fractional

bit count of 2 x 16 = 32 fractional bits.

The count of maximum fractional bits is derived from the difference between the counts of total bits and

control/sign bits. For example, a s32q_t has a maximum of 32 - 3 - 1 = 28 fractional bits.

The count of effective fractional bits is derived from the minimum of the control-encoded fractional bits

and the maximum fractional bits. For example, a s32q_t with 32 control-encoded fractional bits is

effectively limited to 28 fractional bits.

The count of integer bits is derived from the difference between the counts of total bits and all other non-

integer data bits (the sum of control, fractional and sign bits.) For example, a s32q_t with 8 effective

fractional bits has 32 - 3 - 8 - 1 = 20 integer bits. The count of integer bits can be zero if all available

numeric data bits have been reserved for fractional data, e.g., when the number of control-encoded

fractional bits is greater than or equal to the underlying Q data type’s maximum fractional bits.

EXAMPLES
Calculating area of a circle with r=4.2 and rpshft=16

u64q_t a, pi, r;

char buf[32]

Q_INI(&a, 0, 0, 16);

Q_INI(&pi, 3, 14159, 16);

Q_INI(&r, 4, 2, 16);

Q_QCLONEQ(&a, r);

Q_QMULQ(&a, r);

Q_QMULQ(&a, pi);

Q_TOSTR(a, -1, 10, buf, sizeof(buf));

printf("%s\n", buf);

Debugging
Declare a Q20.8 s32q_t number s32, initialise it with the fixed-point value for 5/3, and render a

debugging representation of the variable (including its full precision decimal C-string representation), to

the console:

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11



s32q_t s32;

Q_INI(&s32, 0, 0, 8);

Q_QFRACI(&s32, 5, 3);

char buf[Q_MAXSTRLEN(s32, 10)];

Q_TOSTR(s32, -1, 10, buf, sizeof(buf));

printf(Q_DEBUG(s32, "", "\n\ttostr=%s\n\n", 0), buf);

The above code outputs the following to the console:

"s32"@0x7fffffffe7d4

type=s32q_t, Qm.n=Q20.8, rpshft=11, imin=0xfff00001, \

imax=0xfffff

qraw=0x00000d53

imask=0x7ffff800, fmask=0x000007f8, cmask=0x00000007, \

ifmask=0x7ffffff8

iraw=0x00000800, iabsval=0x1, ival=0x1

fraw=0x00000550, fabsval=0xaa, fval=0xaa

tostr=1.664

Note: The "\" present in the rendered output above indicates a manual line break inserted to keep the

man page within 80 columns and is not part of the actual output.

SEE ALSO
errno(2), math(3), Q_FRAWMASK(3), Q_IFRAWMASK(3), Q_INI(3), Q_IRAWMASK(3),

Q_QABS(3), Q_QADDI(3), Q_QADDQ(3), Q_SIGNED(3), Q_SIGNSHFT(3), stdint(7)

HISTORY
The qmath functions first appeared in FreeBSD 13.0.

AUTHORS
The qmath functions and this manual page were written by Lawrence Stewart <lstewart@FreeBSD.org>

and sponsored by Netflix, Inc.

QMATH(3) FreeBSD Library Functions Manual QMATH(3)

FreeBSD 14.0-RELEASE-p11 July 4, 2019 FreeBSD 14.0-RELEASE-p11


